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1. INTRODUCTION 

Some time ago Goodwin (1967) offered an elegant and 

influential model to represent part of Marx's thinking on business 

cycles. In that model he was able to show how the interaction of 

the reserve army of labor and the process of capital accumulation 

could produce self-sustaining oscillatory behavior. Increases in 

the real wage cause decreases in the rate of growth of the capital 

stock, since all wages are consumed and all profits invested. The 

declining rate of accumulation in turn causes a decline in the 

employment rate, which eventually causes the wage rate to decline. 

The eventual expansion in the growth rate of the capital stock 

begins the process over again. This behavior was described by 

fitting a model of a one good economy into the Lotka-Volterra 

equations, the solution to which is well known. While it has 

proved extremely fruitful, this model also has some well known 

limitations. It is first of all a center, so that no limit cycle 

produced by the model is stable. Second, it takes a rather asocial 

approach to the creation of the labor force, assuming that it is 

governed exclusively by an exogenously given rate of population 

growth. Also, the model assumes that all technical change occurs 

at a constant, autonomously given rate, and allows for no induced 

components. 

In what follows some minor alterations to the Goodwin model 



are shown to introduce interesting new behavior. By making 

technical change depend on economic and social phenomena, and by 

assuming that the labor force grows at least in part in response 

to social phenomena, it is easy to show that the model will now 

generate stable limit cycles. When the model is changed still 

further, to allow for systematic periodic influences -- such as 

those an economy might experience as a result of seasonal changes 

in labor force participation or productivity -- somewhat more 

dramatic dynamic behavior follows. Under certain conditions, the 
\ 

model ceases to be periodic and instead becomes chaotic. The 

resulting behavior is more business-cycle-like because of it is 

irregular. But at the same time the existence chaos implies 

difficulties for empirical 88deseasonalization1t of data. 

The possibility of chaos introduces some questions for the 

study of business cycles. One is whether it is possible to 

discriminate between economic phenomena which are induced by chaos- 

generating non-linearities, and those which are introduced by 

stochastic shocks to some underlying non-linear system. The model 

is used to illustrate this problem and show how an existing 

technique for testing for chaos -- the calculation of Lyapunov 

exponents -- is able to handle it. 



2. A MODIFIED GOODWIN CYCLE MODEL 

the definitions 

X = 

Y = 

a = 

b = 

C = 

e = 

The Goodwin growth cycle model is easy to represent. Given 

the employment rate 

labor's share in net output 

the output/capital ratio, assumed fixed 

the rate of growth of the labor force 

the rate of growth of output per unit of labor 

a threshold value of the employment rate 

the model is given 

Z/X = a-ay-b-c 

G/y = x - e 

Let us begin 

representation of 

(1) 

to develop 

labor force 

characteristics of a capitalist 

the model by first altering the 

growth. One of the outstanding 

economy, as Marx recognized, is its 

ability to change social reality if the need for labor becomes 

strong enough. It can do this by defining groups of workers in or 

out of the labor force as convenient (e.g. the recognition of the 

productive abilities of women during wartime, and the denial when 

war ends); increasing immigration or emigration by changing laws 

governing the treatment of aliens; and by destroying non-capitalist 

economic formations over time. This point of view is part of 

contemporary neo-marxian analysis as well. Marglin 



(1984, PP. 108-9) notes that: 

The labor force available to the capitalist sector 
expands (or contracts) according to demand. In the 
neo-Marxian view, a buoyant capitalism will meet its 
labor requirements much as the countries of northern 
and southern Europe did in the quarter century of 
expansion that followed World War II, first by drawing 
on the labor resources of family agriculture and other 
noncapitalist modes of production, then by drawing on 
the labor resources of an ever-widening geographical 
periphery that ultimately included the entire 
Mediterranean basin and beyond. 

By the same token, a stagnant capitalism will 
simply fail to attract labor. In the extreme case of 
declining demand for labor, the labor force available 
to the capitalist sector will decline absolutely. In 
the place of the overt unemployment that characterizes 
stagnation in the neo-Keynesian view, neo-Marxian 
unemployment is characteristically "disguised 
unemploymentUV... 

Now the implication of this point of view is that the dynamics 

of labor supply are complex and historically specific. Hence any 

attempt to model them must be a bit inadequate. However, we can 

go -a little way toward including them in the Goodwin model by 

replacing the constant b with the term 

b, + b,x2 (2) 

This slight alteration allows increasing employment rates to have 

a negative impact on their own growth. It can be taken to stand 

for the self-correcting behavior of capitalist economies in labor 

SUPPlY- 

Next we want to say something about technical change. Since 

this is a subject about which knowledge is slim, it is hard to do 



so with much confidence. However, the empirical work of Gordon 

et al. (1985) suggests that wage rates and employment rates have, 

respectively, positive and negative effects on productivity growth. 

This is a consequence of their effect on the cost of job loss. The 

higher the real wage, the more is lost when one is out of work. 

And the greater the employment rate, the higher the probability 

that a new job can be found. Hence we will replace the constant 

c with the term 

. 

co + c,y - c2x (3) 

The alterations suggested in (2) and (3) can be combined to 

alter the expression for G/x. These changes, together with a 

specification for the wage determination equation which is slightly 

faster moving than the one in (l), allows us to rewrite the system 

(1) as 

G/x = a - by + cx - dx2 
(4) 

G/y = (1. - e/x)m m>O 

The values of the coefficients of this system can be interpreted 

in obvious ways. 

The dynamics of system (4) can be determined by well known 

methods. The isoclines of the system are displayed in figure 1. 

There are three fixed points in the figure, and the one of interest 

to us is labeled A. The behavior of the system around point A can 

be determined in part by looking at the Jacobian 



(5) 

The stability of A will depend on the value of Tr(J) evaluated at 

A. Some calculation will show that given the parameters in (4), 

the value of Tr(J) will pass from positive to negative as the 
. 

vertical isocline is moved from the origin past the maximum value 

of the G = 0 isocline. That is, the system changes from unstable 

to stable as the $ = 0 isocline is moved from left to right. Now 

by appealing to the Hopf bifurcation theorem (Guckenheimer and 

Holmes, 1983, pp. 151-2), we know that this change in stability 

implies the existence of a limit cycle about point A. The 

amplitude of this cycle will increase as the value of Tr(J) 

increases. What we do not know from the evaluation of (5) is the 

nature of the limit cycle. It could be everywhere attractive 

. (supercritical) or attractive from only one side (subcritical). 

However, by evaluating an index (Liu et al., 1986) of the form 

I = (v'C)-'[(B(F,,,+G,,,)+2D(F,,,+G,,)+C(F,,+G,))v' 

+(DF,,+CF,,) (BF,,+X)F,,+CF,) 

-(DG,+BG,,) (BG,,+2DG,,+CG,) 

-B2F,,G,,- DB(FXyGXX+FXXGXY) 

+C'F,G,+DC(F,,G,+F,G,,) I, (6) 

where F(x,y) = G, G(x,y) = t, C = GX, D = F,, B = -F,, and v2 = 



(BC-D)', it is possible to tell what is going on. When I > 0 the 

limit cycle is subcritical, and when I c 0 it is supercritical. 

Some calculation will show that I c 0 when Tr(J) > 0, so the limit 

cycle is supercritical. The behavior of this system can of course 

be simulated. A time series produced by such a simulation is 

displayed in figure 2. 

3.. PERIODIC TERMS AND DYNAMIC BEHAVIOR 
. 

While it is instructive to know that the alterations in the 

Goodwin model generate limit cycle behavior, we can get somewhat 

more from it by acknowledging the existence of periodic forces 

which act on the state variables of the system. For example, there 

are undoubtedly many seasonalities in labor force participation 

rates -- students move in and out of the labor force with 

vacations: people seek temporary work over certain holidays -- and 

in productivity growth -- weather changes and regular vacation 

periods no doubt affect it. The interactions of these periodic 

forces can generate complex effects.' We 

impact by including a term in cos(wt) among 

in the first equation in (4). For purposes 

by redefining the constant a as 

aO - a,cos(w t) 

will summarize their 

the existing constants 

of exposition we do so 

(7) 



noting that this is not intended to represent a fluctuating capital 

output ratio. The effects of this change in (4) can be seen 

through simulation. The outcomes are dependent on the values of 

the three constants in (7). For the values a,=.35, a,=.07, w=.4, 

with all other coefficients the same as those which obtain for the 

simulation displayed in figure 2, the time series produced are 

still periodic, as can be seen from figure 3. The behavior is now 

more complex than it was, since the system is now three 

dimensional. The three dimensional plot of the system in.figure 

4 shows that it exhibits motion on a torus. This is not the end 

of the possible behavior for this system, however. It is well 

known (Thompson and Stewart, 1985, pp. 84-107) that the addition 

of forcing terms to dynamical systems can sometimes induce chaotic 

behavior. Indeed, Inoue and Kamifukumoto (1984) have shown that 

a differently modified version of the Lotka-Volterra equations can 

produce chaos with forcing if the frequency of the forcing term has 

particular values. In their model, the unforced system has an 

angular frequency of 2.3. By adding the forcing term and 

simulating while varying the angular frequency of forcing over the 

interval [2,5, 4.01, they were able to locate subintervals where 

chaos appears. Although system (4) is different from that used by 

Inoue and Kamifukumoto, some of the dynamic properties appear 

similar. Notably, for 

generate chaos in their 

some of the values of rc[2.5,4.0] which 

system, values of w satisfying w/14 = r/2.3 

will generate apparently aperiodic behavior in (4). However, the 

intervals containing the parameter values in which chaos exists are 

narrower than in their system.2 



When, for example, the value of w is increased to .594, 

behavior of the system appears to become aperiodic. A time series 

for this altered system is displayed in figure 5. The three 

dimensional portrait of the system is given in figure 6. It is 

significantly distorted from the nicely behaved torus, and appears 

folded and stretched as the Lorenz and Rgssler attractors do. It 

certainly looks 

Appearance 

"chaotic I1 . 

can be deceiving, of course, and we need to do more 

to establish the chaotic nature of this attractor. Short of a 

proof, which does not offer itself at the moment, there are some 

techniques which can be used. One is to construct a Poincare/ 

section for the attractor, and to look for the folding behavior in 

the section. A Poincaresection for system, constructed by holding 

the value of expression (7) constant at .4, and then recording the 

first intersection with that plane on each orbit of the attractor, 

is shown in figure 7. It has a folded structure, and as such is 

consistent with chaos. The Poincare map can also be used to 

construct a circle map. The the angles each point on he map, 

relative to an appropriately selected center, are calculated. Each 

angle z(t) is plotted against the previously calculated angle z(t- 

1) l This plot is the circle map. For a non-chaotic system, the 

plots suggest monotonicity and continuity. For chaotic systems, 

continuity and monotonicity break down. The circle map for the 

system with w = .594 is given in figure 8. The map has the broken 

appearance exhibited by maps of chaotic systems. This may be taken 

as another indication that we have chaos. 

As another test of the nature of this attractor, we will 



estimate the largest Lyapunov exponent using one of the time series 

generated by the simulation. Lyapunov exponents can be considered 

.generalized eigenvalues. When looking at a difficult-to-solve 

system of ordinary differential equations at a fixed point, the 

local dynamics can be derived by linearizing the system and then 

calculating the eigenvalues of the Jacobian. (This is what was 

behind the consideration of (5).) This procedure is generalized 

over an entire attractor to produce . time-varying quantities which 

describe the dynamic behavior of state variables. To illustrate, 
\ 

consider at three dimensional system of ordinary differential 

equations 

X(t) = (G&8) (8) 

and denote its flow, i.e. the solution of X(t) from an initial 

vector (xi,yi,zi) , as fi(t) . Now the difference in flows for any 

two points can be written as 

<f(t) = f,(t) - fz(t) (9) 

where 6, 1s the first difference operator. To actually know the 

value of (9) requires solving (8), but by linearization we have 

gf;t) =[dX(t)/df(t)](6f(O)) (10) 

where dX(t)/df(t) is evaluated with changing local coordinates. 

The Lyapunov exponents are calculated by manipulating dX(t)/df(t) 



in ways analogous to those used to extract eigenvalues from a 

constant matrix. However, since the elements of X(t) vary with 

time, it is necessary to look for an average value over the 

attractor.3 For a chaotic attractor, the largest exponent will 

be positive. This makes sense if nearby points are to diverge -- 

if there is to be sensitive dependence on initial conditions. 

Now to obtain an estimate of the largest exponent for an 

attractor, one can use a technique developed by Wolf (1985). It 

requires taking a time series for one of the variab;les and 
\. 

performing a Takens reconstruction of the the attractor. The 

largest Lyapunov exponent is then calculated by following nearby 

trajectories around the attractor. For system (4) with forcing, the 

exponent, estimated from a time series of 20,000 observations on 

the wage share is .03. This is consistent with chaos. m This value, 

it should be noted, is dependent on the way one chooses to follow 

the trajectories around the attractor.4 

4. DISTINGUISHING CHAOTIC FROM STOCRASTIC SYSTEMS 

Since any actual economic data may contain stochastic 

elements, it is useful to ask whether the techniques used to test 

for chaos can distinguish between a deterministic system subject 

to shocks and a chaotic one. To look at this issue in the the 

context of the present model, the system was simulated with no 

forcing term, but with all state variables subject to a random 

shock every ten iterations. The shocks were uniformly distributed, 

with a maximum absolute value of .07. A time series for this 



system is displayed in figure 9. It looks appropriately disturbed. 

These data were also transformed and the Lyapunov exponent 

calculated. These data were analyzed in the same way as those for 

the chaotic attractor. The estimated Lyapunov exponent was .1672. 

This is not enormously encouraging. However, it has been suggested 

that the effects of noise can be reduced by changing the way in 

which trajectories are followed around the reconstructed attractor. 

By increasing the minimum distance between trajectories being 

followed from some initial point, overestimates of the exponent are 
\ 

less likely. The results of varying this distance are shown in 

figure 10. As the minimum distance (scalmin) is increased, the 

estimated exponent for the stochastic system falls, but not 

consistently. For the chaotic attractor, the exponent is sometimes 

reduced, but not always. Discerning something from these patterns 

as an empirical economist would clearly be a trying experience. 

5. CONCLUSIONS 

By making some relatively minor alterations to the Goodwin 

growth cycle model, it has been possible to extend its economic 

reach. The phenomenon of self-sustaining growth cycles was shown 

to be compatible with endogenously determined technical change and 

a self-correcting labor supply process. Both these modifications 

are part of the current neo-marxian economic analysis. After 

integrating these ideas into the model, its dynamic possibilities 

can be expanded still more by adding consideration of 

seasonalities. Along with stable limit cycles, such a system can 



produce the irregularites of chaotic dynamics. 

The time series from the chaotic version of the model look a 

bit more like the time series which we actually observe in a real 

economy. Since they are constructed by introducing interaction 

among periodicities, they have an interesting implication for the 

classic problem of "deseasonalizingtt time series data. 

Deseasonalization is an attempt to clean up observations by 

identifying and removing the periodic blips that clutter them. 

However, even if the intuition of an underlying seasona4ity is 

correct, cleaning up the data may be an,impossible task. This will 

be so if the interaction of the underlying regularities produces 

chaotic outcomes. 

The simulations 

another problem for 

in distinguishing 

of the model are also useful in illustrating 

empirical economics. They show a difficulty 

between data produced by chaotic and 

stochastically perturbed non-linear systems. Lyapunov exponents 

from chaotic and stochastic versions of this model are close, even 

when appropriate adjustments are made in the estimating procedure. 

Sorting out one from the other will clearly require the use of 

other measurement techniques, such as the correlation integral. 
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FOOTNOTES 

1. If all periodic effects were seasonal, i.e. had periods less 

than or equal to a year, and their effects were additive, then the 

period of a composite forcing term would also be seasonal. 

However, non-linear interactions are possible among seasonalities - 

- e.g. workers can take winter vacations, 

replacements, and thus multiply the negative 

weather on productivity. Hence we might 

making firms hire 

effects of,winter 
b 

have terms like 

sin(wit)sin(w,t) = 1/2[cos(wi-w,)t -cos(wi+w,)t] which can allow for 

non-annual periods. Also, not all periodic effects need be annual. 

There may be, for example, longer weather cycles. 

2. The Inoue-Kamifukumoto model is 

& (a-b cos(wt))x - cy -dx3 

; = y(cx-a) 

Without forcing, b=O. 

3. Lyapunov exponents 

(1984) and in Bergeet 

text follows Berg& et 

illustrate the idea 

dX(t)/df(t) = c 
A(3 

. 

are discussed in Grassberger and Procaccia 

al (1984, pp.279-88). The discussion in the 

al. They use the following special case to 

of 

1 

Lyapunov exponents. Suppose that 

C ,where A = A(f(t)). Then we have from 

6f(t) = dX(t)/df(t)bf(O) that6 = A&(O). This can be integrated 
l- 

to obtain G(t) = dx(O)exp{Adt. Th+s in turn can be transformed 

to give l/t(ln(bx(t)/bx(O;) = l/t 5 Adt. Since it can be shown 
0 



T 

that xi, the average value of A is given by i = lim l/t (Adt, then 
*+a 

limMc(t)/~x(o) is equal to Z. A general version of this result 
f*fi 

is the basis for estimates of the largest Lyapunov exponent. 

4. To estimate the largest Lyapunov exponent, the Wolf algorithm 

proceeds as follows: From a single time series, make a Takens 

embedding of the form zi = (x(ti), X(ti+q),...X(ti+(d-l)q)), where 

d is the embedding dimension, q is a time lag. Plot the zi in d- 

space. Then pick a reference trajectory on the constructed 
\ 

attractor. Pick another trajectory within a specified distance of 

the reference, i.e. at a distance greater than scalmin, but less 

than scalmax. Follow this test trajectory and reference trajectory 

for a sufficient distance. Calculate Li = log,(D,/D,), where D, is 

the distance between the initiaL and final point on the reference 

trajectory, and D, is the similar distance on the test trajectory. 

Then proceed along the reference trajectory and calculate Li again. 

Then use the sum sLi/N, 
i 

where N is the number of computations, as 

an estimate the largest Lyapunov exponent. 

In this paper, q=l, d=3, and the attractors are followed for 

a period of 14, which is approximately the period of the 

unforced version of the system. 
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