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Abstract: This paper develops a discrete, nonlinear growth cycle model
for a macroeconomy. The nonlinearities, which correspond to empirical
relationships between profitability and capacity utilization in the postwar
U.S economy, can produce stable, periodic and chaotic behavior. These
behaviors are established_analytically,  and further investigated through
simulation. Data from the simulations are used to show that chaotic
attractors can produce time series which are useful representations of
business cycles.



1. INTRODUCTION’

Goodwin’s original t 19671 work on growth cycles has stimulated much

subsequent research. Since his model assumed full utilization of capital

and generates rather long cycles, some effort has been put into examining

the possibilities of self-sustained growth oscillations when capacity

utilization is variable (Desai, 1973; Foley, 1987; Jarsulic, 1988, pp. 47~65;.

Medio ,198O; Semmler ,1987; Skott, 1989).  Many of these models assume

nonlinear investment functions, which are the source of the interesting

dynamics.

,

The models often are set up as two-dimensional continuous systems,

which allow use of the Poincare-Bendixson or Hopf bifurcation theorems to

establish conditions for the existence of cycles. Such a choice of modeling

technique of course restricts the possible dynamics, since chaos cannot

occur in continuous systems of dimension less than three.

The model developed in subsequent sections introduces some new

elements to this line of investigation. First, the dynamics of the model

depend on nonlinearities related to income distribution. They derive from

connections between potential profltability and capacity utllization, which

play a large part in some current neo-marxian macro literature (8owles  et

al., 19891. Hence it develops an empirically relevant case where the

interesting dynamics are not derived exclusively from the aggregate demand

side. Second, the model is cast in difference rather than differential

equation form. It is show3_analytically  that stable, periodic and chaotic

behavior are all possible in one and two dimensions. In this way the menu of

dynamical alternatives is lengthened. Now of course what is on the menu is
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not always available in the restaurant. indeed, the analytical results

establish the possibilfty of chaos, but not the existence of chaotic

attractors of positive measure. Therefore computer simulation is used to

show that chaos occurs in a detectable way for some, but not all,

configurations of the model. The data generated by these simulations are

also interesting because, like actual business cycle time series, they can

produce runs of increasing, decreasing, or relatively stable data before

exhibiting a marked change in direction. This indicates that chaotic,

dynamical systems may be more suited to business cycle modeling than is

sometimes supposed.

2. A DISCRETE GROWTH CYCLE tlODEL

At the center of the model is the relationship between current

profitability and the rate of capacity utilization. It is drawn from, and is a

drastic simplification and compression of, ideas which are summarized in

Bowles et al. (19891. There they suggest that, ceteris paribus, the rate of

profit first rises, then begins-to decline, as the rate of capacity utilization

increases. The theoretical explanation for this phenomenon lies in the

marxian  idea that there is conflict between workers and employers over the

payment for labor time and the intensity of work. At lower levels of

utilization workers’ position is weaker. Therefore they can be made to work

harder and real wage growth can be more easily restrained. As utilization

increases, their power bexomes  greater relative to employers, and real

wages can rise more rapidly and/or work effort can decline. These

relationships can be summarized in the following equations:
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q = F(ui, 01, F’t > 0, F-2 < 0 (11

Equation (11 is a general functional form for the relationship between’fhe

rate of profit, a, and the rate of capacity utilzation, u. If there were no

changes in the real wage or the intensity of work, profits would increase

with utilization. However, real wages and work intensity, which are

reflected in labor’s share O, are assumed to affected by current rates of

utilization as in equatlon (2). The variable u is deflned in (3) as Y/K, NNP

divided by the real capital stock. The use of Y/K as a measure of relative

power is based on the assumptions that the labor force is a socially defined

part of the population which moves more of less in step with the size of

productive capital; and that employment is a proportional (or more than

proportional, when work intensity is declining) function of output. It is not

a bad empirical assumption for the post war US economy, as the discussion

in Bowles  et al. (1989, pp. 126-28)  indicates.

To make the elements of (1) - (3) tractable for dynamical analysis we

want to represent them as a piecewise linear function

Aut - O<U~(U”_
q =

6 - cut lJ+ 6 Ut S hrw

(41



Next we turn to aggregate demand and goods market clearing. We will

make the assumption that depreciated capital is replaced, and that net

investment is determined by profits, with certain lags. The time delay is

attributable to order-construction lags. Thus investment will reflect the

Kaleckian/neo-marxian  belief that profits are the central determinant of

investment expenditure. (See, for example, Kalecki , 197 1; Nargli n 1905, pp.

52-95). This belief receives emp:rical  support in the neo-Keynesian

(Fazzari et al., 1988) and neo-marxian  (Bowles et al., 1989; Gordon et

1988) literature. The rate of growth of the capital stock is given by

al.,

91 = at-1 (Sa)

or

gt = (RI + q_4/2. (5b)

where gt = [K1/K+,]  - 1. On the consumption side we will assume a

Kaldorian consumption function, where a constant proportion of wages, c,,

and a constant proportion of profits, c, are consumed. Given the

inequalities 1 > c, > & > 0, and assuming that the goods market clearsz, we

have the following equilibrium condition for the goods market3

ut = agt - bnt (6)

where a = l/( 1 -c,), b = (c&J/(  1 -c,).



3. THE DYNAfllCS  OF THE I’IODEL

We can now consider two cases of this model. To construct the first we

wil? use (41, (5a), and (61, which can be combined to produce a first order

difference equation of the form

y = Aa/( 1 +Ab),  9 = E/( 1 -Cb), Q = C/( 1 -Cb). To make (71 easier to analyze, it

will be made differentiable by assuming smoothness in an arbitrarily small

neighborhood around the peak. That is (7) will be replaced b y

where f is a smooth function with f’ = v at n*-C, f’ = 7) at IV+~, where ~0.

Equation (8) is represented graphically in Figure 1. A condition sufficient to

keep this system inside its defined range is v < 1 + yt), which will b e

assumed.

Note that the slope of the downward sloping segment in Figure 1 is

determined by the coefficient 4. This is turn is determined by the

coefficients C and b. C reflects the tendency of profitability to fall as

utilization increases -- the more rapidly profits fall, the bigger is C and
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hence 4. Increases in cl; will reduce the absolute value of b, while increases

in c, will cause it to decrease. Therefore the bigger the multiplier effects

of shifts in income distribution, the larger this coefficient.

There are two equilibrium points in this system, labeled and Po and P1 in

the diagram. Their stability properties will depend on the eigenvalues of (8)

at those points. At PO, it is given by ti&l~+f  =‘f, and at PI by drrt/dnt_1 = -$

CDevaney,  1986, pp. 170-74). Hence PO will be unstable if v > 1, which will be

true if c, and hare large enough; and PI will be unstable if H >l, whi?h will

be true if the tendency of profits to decline is strong, or if distribution-

related demand effects are large. The most interesting configuration of

this system occurs when both the fixed points are unstable. Then it is

possible to establish analytically the possibility of a wide variety of

dynamics.

To investigate the dynamics of (81, one can use a theorem which

establishes sufficent conditions for chaos in n-dimensional difference

equations. First we need

Definition 1: Let xk+f = F(xk), where xk E Rn and F: Rn-+ Rn is continuous.

Also let F be differentiable in some closed n-dimensional ball BAz).  The

point z E Rnis an expanding fixed ooint of F in BAz) if F(z) = z and all

eigenvaIues  of the Jacobian DF(x) exceed 1 in norm for all x E BAzI.

Definition 2: Assume that z is an expanding fixed point of F in 8Az) for

some r > 0. Then z is said to be a snao-back repeller of F if there exists a

point x, in BAzI such that_xof  z, Fm(x&  = z, and iDFM(x&l  f 0 for some

positive integer m > 1. Here FVepresents the composition of F with itself

m times.



The following can be shown:

Theorem: If F is differentiable and has a snap-back repeller, then F is

chaotic.4

Proof:  Marrot to (1978).

Then it is possible to establish the following: \

Proposition 1: If 4,~ > 1, 1 +$@>r, and (fl +jf$]tz)+,  then (81 is chaotic.

Proof: Consider Figure 2. Points “0 and nf always exist. Now if it is the

case that II~ x \p*, then there exists an n3 such that p* > %, q> 3, and for

which F%c3) = %. The condition %<*p* will be met if (1 +$$)(l  - ll(l+$)) q?

Since y > 1, it is sufficient to have ([l +@yZ)c$  to ensure that %-~Tc*.

Define r = “015, B&qJ = [q-r, %+r], and note that no + r .C (1 +*>a*.  We

know that F’(n) = * for all IE c B&C,-,). This makes 3 an expanding fixed

point. Since IDF%$i = [F’(F%$)]  [F’(F%$)]  [F’@l f 0, rro is a snap-back

repeller.

While this proposition establishes the possibility of a wide variety of

dynamical behavior for (81, it does not prove that the chaotic set will have

positive measure. This previously has been recognized as limiting the

usefulness of existence results (Day and Schaefer, 1935; Baumol and

Benhabib,1989).  It is, how_ever, possible to use computer simulation

techniques to learn more about the system. Proposition 1 suggests the

possiblity of very complex periodic behavior, and that indeed manifests

itself for different combinations of parameter values. Setting v = 1.1, $ =



1.05, constructing a simple function4 for f(q_t), and then simulating the

system for 25 iterations produces the time series plot of Figure 3. This

appears to be a 4-cycle. Raising the value of 4 to 2.1 produces the far more

complex time series of Figure 4. The histogram for 5000 interations of this

series, in Figure 5, looks stochastic.

To test for aperiodicity, one can try to establish the dimension of an

attractor empirically. Chaotic attractors often are characterized by

fractal, i.e. non-integer, Hausdorff dimensions (Berge et al.,1 934, pp. 1:!2-.

14). The Hausdorff dimension is defined by looking at the minimum number

of n-dimensional hypercubes which cover the attractor in n-space. When

M(k), the minimal number of hypercubes of length L, is related to L by the

approximation

M(L) = L-D KU

t+o

then the dimension is D. For a chaotic attractor in l-space, D will be

greater than zero but less than 1. In a series of papers, Grassberger and

Procaccia (1933a,  1933b, 1984) have established a method for estimating
.

dimension. They show that the-correlation intergral, defined by

C(k) = lim 7. H(k,Zij)/(N(N- 1)) 001
34

N + *

where N is the number of points, Zij’is the distance between points i and j,

and H is the Heaviside function defined by
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0, ktZ

H(k,Z) =

1, k>Z

(ll>

is characterized by

- They also show that the value of the coefficient y provides a lower bound to

the Hausdorff dimension of an attractor. Furthermore, the value of y often

turns out to provide, in practice, a good estimate of D.

The Grassberger-Procacci a method can be implemented (Grassberger and

Procaccia, 1983b,  Schaffer et al., 1986) by constructing successively higher

level Takens (19Sl)  embeddings of a single time series. A n-dimensional

Takens embedding is constructed by taking the observations on a variable x

and creating an n-dimensional vector Zi = (X(ti), x(ti + o)...X(ti + [n- 1 lq)),

where ti and q are time indices. Then for each level of embedding,

AlnC(k)/Aln(k)  is plotted against In(k) for a set of values of In(k).  From this

plot, a Set of values of M(k) where AlnC(k)/Aln(k)  is stable is selected, and

a least squares regression of lnC(k)  against In(k)  is calculated. The slope of

the regression is the estimate of v from expression (12). if the values of Y

from the regressions appegr  to converge as the embedding dimension rises,

then they are taken as an estimate of the Hausdorff dimension
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The correlation integrals for (81, with v = 1.1 and I) = 2.1, and with Takens

embeddings of one through four, were calculated for a simulation of 1000

iterates. These are displayed in Figure 6, and the statistical results of the

regressions are given in Table 1. The results show that the estimate of

\ dimension is not statistically different from one. Similar results occur for

various values of + and 1 ,and for simulations of different length. We

conclude that the chaotic set for (8) is difficult to identify. Since actual

economic time series are usually shorter than those used here, it would
.

undoubtedly be difficult to identify chaotic behavior if the underlying

economic process were simi 1 ar.

To see that aperiodicity is more easily identifiable in a system which is

only slightly different, we can consider a second case. Using (4), (6) and

(Sb), which allows for longer lag effects in capital accumulation, we have

nt =

0 I q-1 + yt_1 I n*-c

fL*-cIlLi_l  + y~_prt*  +e

Yt = T-1

where e>O  and where h is a smooth function with h’ = v/2 at x*-e and h’ =

-q1/2 at n*+c.  The system (13) has a non-zero fixed point at tq,= ~19) = (4 +

‘ylrt*l w4 J Ycl = (4, We a@in need to assume that (I +fib) > 7 to prevent the

the system from expanding out of range. Constructing the Jacobian of (13)

snd using it to solve for the eigenvalues A of the system gives A = [lL?][-g/Z f



[(@fi?)z-21$]‘“]. To have the fixed point be unstable but not a saddle point (i.e.

to have it an expanding point), we need mod(I) > 1.

Marroto’s theorem again can be used to learn more about the dynamics of

031.

Proposition2:  When8>+>2,  (IL?[  #]-I$)> 1,(1+~g)>~,and~islarger

than but sufficiently close to 1, (13) is chaotic.

Proof: Consider the sequence of point& in Table 2. 5y starting at the point

frr3,y3) and applying (13), one Iterates up the values in the table to the fixed

point CQ,~&. Now the distance between (n3,y3)  and the fixed point is given

by d3 = Iq)ri)l+&  When d3 is sufficiently small, all points in a two

dimensional ball of radius d3 centered at (q-&b) will produce eigenvalues for

the Jacobian of (13)  given by R = [l/q+2 f [(@2)2 - 49. For 8 > Q > 2, the

eigenvalues will be complex. For values of 4 satisfying IlrZ( $2 ] - 4 > > 1,

modQ) > 1 and all points in the ball will be expanding. Application of the

chain rule implies a non-zero value for IDF%3,y3)1, since IDFI  z 0 everywhere

along the path from (II&. Hence (%yc,) is a snap-back repeller.

When (13) is simulated for the parameter values y = 1.1, 0 = 3.5, which

according to proposition 2 gives (13) a chaotic att_ractor,  an erratic time

series is produced. The statistical estimates of the dimension are given in

Table 3, and the scaling region is displayed graphically in Figure 7. The

estimates appear to converge to a value of about around 1.5. In’ this case

the existence of a chaotic attractor is indicated. It is important to notice

that this simulation produces series in which data increase, decrease or

rema in relat ively stab te for multiple periods. This is illustrated in Figure
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8, in which forty points from the simulation are graphed. The values

graphed there are listed in Table 4. Notice that these data imply an even

smoother series for the rate of capital stock growth, which is a two period

moving average of profit rates. This suggests that one commonly perceived

shortcoming of chaotic systems, i.e. that they produce time series which are

saw-toothed and therefore not adequate to represent the smoother time

series of actual business cycles (e.g. Gabisch and Lorenz, 1989, p.1891, does

not apply to all chaotic systems. While no-one would pretend that the,

simulated time series looks exactly like a representative macroeconomic

series, it does have some family resemblance. This is not a bad outcome

from a small, nearly piecewise linear system. It might be the case that a

higher-dimension chaotic process can generate endogenously both the

sustained movements and the stochastic blips one associates with business

cycle data.

4. Conclusions

The model developed Kthis paper investigates the potential

contribution of a nonlinearity in the profit-utilization relationship to

growth dynamics. Using a discrete, nearly piece-wise linear framework, it

has been shown that those contributions can be significant and varied. When

the fixed points of the system are unstable, complex dynamics are possible.

They can be periodic and aperiodic. When aperiodic, the models need not

exhibit the alternating increases and decreases in value t-hat are sometimes

associated with chaotic systems. Runs of data in one direction or another

are possible. In this respect, the chaotic model developed is qualitatively
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like actual lwlness  cycles, where turning points do not follow immediately

on one another.

It has been emphasized that these dynamics are tied closely to

profitabilty. The stability conditions of the model are determined by the

strength of profit declines induced by utilization, and the strength of

changes in consumption demand induced by changes in profitability.

Moreover, profitability governs the rate of accumulation. The model thus

echoes the connections drawn in classical economics between profitahljty

and cycles, although it does so while taking account of utilization.

The dlscusslon  also illustrates the value of simulatlon when applying

nonlinear dynamics to particular economic models. Definite anaiyticai

results are not easy to obtain for nonlinear models . However, the use of

analytical techniques where possible, combined with data analysis of

simulated models, can confirm (or frustrate) intuitions in a helpful way.



FOOTNOTE5

1. The support of the Jerome Levy Economics institute, Bard College, is

gratefully acknowledged. The views expressed are those of the author and

do not necessarily reflect the views of the Levy Institute.

2. The restriction that workers save something is necessary to rule out

multiple solutions in this formulation. For the postwar US economy th!s is

not a bad assumption (Marglin,1985,  pp. 393-455). To get around the

multiple solution case assuming no worker savings, one could recast

aggregate demand relations along the lines of Foley (19871,  or assume

Robertsonian consumption relations, where current consumption is partly a

function of previous income.

3. As is made clear in the text, the set-up of this model is derived

directly from the work of Gordon, Bowles and Weisskopf. In fact the

graphical framework, which inspired the dynamical analysis, was suggested

by David Gordon’s informal presentation of the theory underlying his recent

econometric work. However, while my debt to these economists could not

be more evident, they are not implicated in the analysis of this paper.

4. To say that F is chaotic means that there exists

(il a positive integer N such that for each integer p

period ij;

> N, F has a point of

(ii) a “scrambled set’ of?; i.e. an uncountable set S containing no periodic

points of F such that



lb) for every X,Y E S with X t Y
lim sup !lFk(X) - Fk(Y)jl  > 0
k+*

Cc) for every X E S and any periodic point Y of F
lim sup IlFkW - FkWll  : 0
k+-

Cd1 an uncountable set So of S such that for every ::,Y E So
lim inf IIFklX>  - Fk(Y>lJ  = 0

\
L

k+-

4. In simulating this version of the model, the function connecting the

linear segments was constructed by inscribing a circle of small radius

tangent to a point on pi-t. A straight line, with slope -$, tangent to the

circle, determines the rest of the function F. While the result is

differentiable, it is not much different from the piecewise-linear model.

The same technique was used in the simulation of the two dimensional

model.
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TABLE 1

n 80 al ci df ln(kO)

1 4.47 .98 .006 4 -9.5

2 3.88 .99 ..003 4 -9.5

3. 3.47 1.00 .009 4 -9.5

4 3.13 1.02 .02 4 -9.5

ln(k1)

-7.0

-7.0

-7.0

-7.0

\

n: embedding dimension; a$ intercept of regression; al: slope of ragression
and estimate of dimension; ci: 95 per cent confidence interval for al; df:.
degrees of freedom for the regression coefficient al; kg: the minimum
value fork in the scaling region; kl: the maximum value for k in the scaling
region. The estimates were made using a simulation of 1,000 observations.



Table 2



TABLE 3

n a0 al Ci df

1 5.16 .m .004 5

2 7.02 1.50 .025 5

3 6.39 1.49 ,018 5

4 6.10 1.49 .022 6

ln(kO) ln(kl)

-10.5 -7.5

-9.0 -6.0

.-8.5 -5.5

-9.0 -5.5 .

n: embedding dimension; ag: intercept of regression; al: slope of regression
and estimate of dimension; ci: 95 per cent confidence interval for al; df:
degrees of freedom for the regression coefficient al; kg: the minimum
value fork in the scaling region; kf: the maximum value fork in the scaling
region. The estimates were made using a sample of 1,000 observations.



Table 4

5.425598E-002
4_973886E-002
4_801036E-002
5.376207E-002
5.189957E-002
4.509346E-002
5_334616E-002
5.414179E-002
4.189740E-002
5.282156E-002
5_209543E-002
4.639660E-002
5.417061E-002
5.400870E-002
4.068752E-002
5_208292E-002
5.102374E-002
4.956466E-002
5_397161E-002
4.881284E-002
5_012853E-002
5_441776E-002
4_704532E-002
5 244095E-002
5.471745E-002

4.247413E-002

5_345537E-002

5.276122E-002
4.412229E-002
5.323593E-002
5.357452E-002
4_299552E-002
5_311352E-002
5.285998E-002
4_454770E-002
5_357422E-002
5_396705E-002
4.18041OE-002
5.267413E-002
5.196303E-002

.

Simulat ion  of  (13), with 8 = 1 .l, 9 = 3.5,  40 i terations
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