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ABSTRACT 
 
The Gibson paradox, long observed by economists and named by John Maynard Keynes 

(1936), is a positive relationship between the interest rate and the price level. This paper 

explains the relationship by means of interest-rate, cost-push inflation. In the model, 

spending is driven in part by changes in the rate of interest, and the central bank sets the 

interest rate using a policy rule based on the levels of output and inflation. The model 

shows that the cost-push effect of inflation, long known as Gibson’s paradox, intensifies 

destabilizing forces and can be involved in the generation of cycles.  
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GIBSON’S PARADOX, MONETARY POLICY, AND THE EMERGENCE OF 
CYCLES 
 
1. Introduction 
 
The term “Gibson paradox” relates to observed positive correlation between the interest 

rate and the price level (Tooke 1838). One logical explanation, which has been 

propounded—but vigorously challenged—for ages is as follows. If interest rates are a 

cost of production and prices are based on costs, then interest rate rises would be passed 

along to consumers in the form of higher prices (Sraffa 1960; L. Taylor 1983; Garegnani 

1983; Dutt 1990–91; Pivetti 2001; Barth and Ramey 2001). As Taylor (2004) points out, 

this notion, “that the price level (and, by extension, the inflation rate) depends positively 

on the interest rate [,] has a checkered history.” It should be noted that there is even some 

modern evidence of the Gibson paradox, known by econometricians as the “price 

puzzle”’ (Hanson 2005). If this highly unconventional view were correct, high interest 

rates would be exactly the wrong medicine for inflation.  

This paper probes the implications of Gibson’s paradox, extending the model 

presented in Hannsgen (2004) with what I believe is a more satisfactory specification. 

First, a discussion of some of the theoretical issues involved precedes the substantive 

work of the paper.  

2. The Role of the Gibson Paradox in Economic Models 

As pointed out in Hannsgen (2004), if the cost-push channel of monetary transmission 

were operative, one might imagine that counterinflationary monetary policy would 

generate instability; a higher inflation level leads the authorities to increase interest rates. 



This would have the effect of increasing inflation rather than containing it, forcing the 

authorities to again raise interest rates.   

The cost-push effects of interest rates have been used in formal models in the past 

(L. Taylor 1983; Dutt 1990–91). In Taylor’s model, for example, interest costs enter the 

pricing equation through working capital needs. In Dutt’s (1990–91) model, interest costs 

affect the mark-up firms must charge. Despite the insightfulness of these models, they 

treat monetary policy in an exogenous sense, which may not capture dynamics that are 

policy driven. In Taylor’s model, the money supply is exogenous. In Dutt’s model, the 

interest rate is exogenous and the money supply endogenous. In the period since those 

articles, a relatively new approach to modeling policy has gained acceptance in some 

circles. Rather than taking monetary policy (the interest rate) as a constant, recent authors 

have made it a function of central bank target variables, such as inflation and the output 

gap (J. Taylor 1993). This paper seeks to marry this new way of modeling policy 

formation to a model in the spirit of L. Taylor and Dutt (Hannsgen 2004).  

The characteristics of the model are then as follows. First, equilibrium prices are 

determined by costs, plus a markup. Interest rates are determined by the central bank. In 

this case, the central bank is assumed to target inflation and output. Turning to the 

dynamics of output, in addition to a standard interest-rate effect, a Minskyan effect of 

interest-rate changes on output is posited (Minsky 1986, esp. Ch. 9; Hannsgen 2005). 

Along with the use of a policy-setting rule, this effect is, as far as the author knows, a 

second novel addition to a Gibson-effect model in Hannsgen (2004) and this paper. 

 Though this new model is based on Hannsgen (2004), it adds several new 

features. First, the policy setting rule, which has incremental changes toward a level 



dictated by a Taylor rule, fits with the usual understanding of Taylor rules better than the 

old one, which was stated strictly in terms of the rate of change of the interest rate. 

Second, a real interest rate level argument has been added to the aggregate demand 

equation, making the model more general. Third, to abstract from extraneous issues about 

incorrect price expectations affecting the real wage, “myopic perfect foresight” has been 

added to the wage Phillips curve, meaning that agents know, and act upon, the current 

derivative of the price level. Fourth, a markup has been added to the price-setting 

process; this puts the model in the somewhat more natural environment of monopolistic 

price setting. Fifth, a clearer explanation of the adjustment process governing output has 

been added. The result of all these changes is a much more complex model, which 

reduces to a system of three nonlinear differential equations in three variables, rather than 

two equations in two variables. The proof of the dynamics is commensurately more 

involved. 

The results of the model are as follows. Proposition 1 below states that if three 

conditions on the parameters are satisfied, a limit cycle exists locally at the (conjectured) 

equilibrium point: in inflation-output-interest rate space, there is a closed cyclical path 

outside of the equilibrium point. The economy can be attracted to the cycle from 

everywhere in the state space except one. Alternatively, a “corridor of stability” exists, 

within which the economy tends to move toward the center. Propositions 2 and 3 in the 

paper show that the sensitivity of the policy reaction function (Taylor rule) is an 

important determinant of the stability of the system— if it is too low or too high, the 

system will be unstable. The paper will now demonstrate how these results come about. 

 



3. The Model 

Prices are driven by costs in this model. It is assumed that there are two factors of 

production: labor and bank loans. The production technology dictates that firms must hire 

“a” units of labor for each unit of output they want to produce. Moreover, output takes 

one period so that entrepreneurs must pay one period’s interest on their labor costs.1 The 

entrepreneurs hence borrow from the banking system, which operates on a pure 

“overdraft” basis. That is, banks grant all needed loans at a given interest rate and in turn 

borrow needed reserves from the central bank (terminology from Hicks 1974; for modern 

accounts, see Moore 1988; Lavoie 1992; Wray 1998). Mathematically, these assumptions 

mean that costs are: 

C=(1+R).a.W 

Here and in subsequent equations, capital letters indicate variable names. Small 

letters are positive parameters or function names. Periods indicate multiplication. Small 

letters followed immediately by parentheses indicate functions. W is the hourly wage, a is 

the (fixed) labor/output ratio, R is the interest rate, and C is the cost of production of one 

unit of output.   

 

The story of the equation is as follows. Firms hire workers at the beginning of the 

period. They start with no money, but must pay wages in advance. Therefore, they 

borrow the full amount of their wage bill from banks. The central bank sets the interest 

rate for reserve borrowings and banks, which, for convenience, charge no markup. Firms 

pay workers the full amount of their wages, which are a.W times the amount produced. 
                                                 
1 Structuralists have emphasized the role of working capital in constructing models of the stagflationary 
effects of monetary contractions (Taylor 1983). 



At the end of the period, firms sell their output. We will see that they charge a markup on 

their costs. For each unit of output, these costs include the wage bill, a.W and one 

period’s interest on the loan, r.a.W. The firm’s equilibrium receipts are a gross markup, 

m, times total unit costs (1+r).a.W, times the number of units sold. In a moment, we see 

how prices adjust to their equilibrium level of m times unit costs. After receiving its sales 

proceeds, the firm pays back its loan by making a deposit of (1+r).a.W. They retain a 

profit of (m-1).(1+r).a.w times units sold. 

Using the approximation that the logarithm of (1+R) is roughly R for small R, the 

equation for the logarithm C is: 

Ln(C) ≈ R + ln(a) + ln(W)        (1) 

where the function ln indicates the natural logarithm. It is assumed that prices adjust 

toward a fixed markup over costs, in a Kaleckian way. 

П = b.(ln(m.C) - ln(P))     (2) 

 

where П is inflation ((dP/dt)/P), and P is the price level. Substituting (1) into (2) and 

differentiating by time, one gets: 

dП/dt = b.((dR/dt) + (dW/dt)/W – П)     (3) 

where the approximation is replaced by an equals sign for convenience. To flesh out the 

details of this equation, one assumes the following.  

R*=c(П-Π*,Y-YP) 

where R* is the central bank’s target interest rate, Y equals output or income, Π* and YP 

are target levels, and cΠ, cY > 0, using subscripts to indicate partial derivatives. The 

function c and all other functions are assumed to be smooth. The central bank determines 



the optimal interest rate as a function c of how far Y and Π diverge from their target 

levels. The function c is a very general form of a J. Taylor (1993) rule, which is often 

used largely as an ad-hoc construct in macroeconomic models. Interest rates are adjusted 

by the central bank according to its preferences regarding inflation and output levels. 

Next, we posit a process by which the central bank adjusts the policy interest rate toward 

its target level, R*. 

dR/dt = h.(R* -R)      (4) 

The constant h is a speed of adjustment of the interest rate toward the target given 

by the Taylor rule. Judd and Rudebusch (1998) have used a somewhat similar adjustment 

equation in connection with a Taylor rule, arguing “Central banks often appear to adjust 

interest rates in a gradual fashion—taking small, distinct steps toward a desired setting.”  

The wage growth equation is: 

(dW/dt)/W = d(Y) + Π     (5) 

dY > 0. Wages are driven by the power of labor, which is positively affected by a 

vigorous economy (high Y). The inflation term indicates that there is no “money illusion” 

in the wage bargaining process; it can be thought of as a “myopic perfect foresight” 

expectations term (Flaschel, Franke, and Semmler 1997). Since workers know the current 

derivative of the price level, any existing inflation does not affect the outcome of the 

bargaining process in real terms. Though different assumptions about expectations 

formation may have important implications, these are somewhat extraneous to the issues 

examined in this paper. We do not wish to explore further how incorrect expectations of 

the price level might affect the business cycle, a hypothesis that has been amply 

discussed elsewhere. 



Plugging (4) and (5) into (3): 

dП/dt = b.(h.(c(П-Π*, Y-YP)- R) + d(Y))       (6) 

The demand side of the model features an “acceleration channel”— the rate of 

change of the interest rate affects output (Minsky 1986 and Hannsgen 2005; see Minsky 

quotations within the latter).  Interest rate changes can have an effect on the financial 

condition of banks and other firms, particularly when there is maturity mismatch between 

their assets and liabilities. Perhaps one of the most extreme cases is the savings-and-loan 

crisis of the late 1970s and early 1980s. As Federal Reserve Board Chairman Paul 

Volcker raised interest rates, savings and loans found themselves losing deposits to 

instruments with a greater return than deposits. Eventually, savings and loan institutions 

were able to raise their deposit rates in an effort to retain funds. But the assets of savings 

and loan associations were mainly fixed-rate, long-term mortgages. Thus, even as savings 

and loans paid more for deposits, their income remained largely unchanged. The resulting 

squeeze was one factor that ultimately led to the loss of all positive net worth of the 

industry. Of course, it is admitted that the rate of change of the interest rate is not the 

same as the difference between short and long rates, but the acceleration term in 

aggregate demand is a simple way to capture the more complicated real-world 

phenomenon. 

 



Nonetheless, a stylized stochastic model can be developed in which the two concepts are 

identical.2  

To reflect these considerations, it is assumed that part of real aggregate demand 

(or sales) is a linear function of output and part is a function of the (expected) real interest 

rate and the rate of change of the interest rate.  

D = k + n.Y + e(dR/dt, R-Π) 

0 < n < l 

In accordance with the argument of the previous paragraphs, edR/dt<0 and eR<0. 

The Π term fits with the previous assumption of myopic perfect foresight. The 

mechanism equilibrating demand and supply is 

dY/dt = g.(D – Y) 

                                                 
2 Suppose there are two interest rates: 
 
Rt is the short period rate in period t. I can lend one dollar in period t and get back 1+Rt dollars in period 
t+1. 
 
rt is the long-term (two period) interest rate in period t. I can lend one dollar in period t and get back 1+rt 
dollars in period t+2. 
 
I hypothesize that the short-term interest rate follows a random walk: 
 
Rt+1 = Rt + et+1
 
Where et+1 is a random, serially uncorrelated variable with a mean of zero. 
 
Then: 
 
Et(Rt+1) = Rt    (1) 
  
where E is the expectations operator. Now suppose I assume an “expectations” theory of the determination 
of the interest rate. The two-period (long-term) interest rate is the average of this period’s short-term rate 
and the expectation of next period’s short-term rate. Using (1),  
 
rt = (Et(Rt+1) + Rt)/2 = Rt      (2) 
 
Then, shifting (2) back by one period, one can see that the difference between the current cost of funds and 
the “old,” long-term loans on the books is the same as the first difference of the short rate: 
 
 
R(t)-r(t-1) = R(t) – R(t-1) 
. 



=  g.(k + n.Y + e(dR/dt, R-Π) – Y) 

= g.(k + n.Y + e(h.(c(П-Π*, Y-YP) – R), R-Π) - Y)     (7) 

It is assumed that excess or deficient demand results in an undesired change in 

inventories, so that demand always equals sales, if not output (Y). 

 

4. An Analysis of the Dynamics 

The dynamics can be previewed briefly. The system at issue is given by differential 

equations (4), (6), and (7), each in the variables П, Y, and R. First, the Gibson effect, as 

one might have foretold, has a tendency to destabilize the equilibrium point. Moreover, 

under certain, fairly weak, assumptions, it will be shown, the model fits locally into a 

well-known “genus” of cycles, which has recently been explored by L. Taylor (2004) and 

the Bielefeld School (for example, Flaschel, Franke, and Semmler 1997; Chiarella and 

Flaschel 2000). This can be shown by the Hopf bifurcation theorem. If three conditions 

hold, the only unknown is whether the local cycle is stable or unstable (subcritical or 

supercritical). Finally, very low or very high values of the sensitivity of policy to inflation 

guarantee instability. 

The formalities are as follows: 

PROPOSITION 1 

ASSUMPTIONS: 

(1) eR < h.edR/dt 

(2) h.cΠ.edR/dt < eR 

(3) the “nonzero speed” (non-inflection point) condition3

                                                 
3 This assumption involves a complicated equation involving all of the parameters not holding exactly. 
Details are available from the author. See below. 



with all derivatives evaluated at the equilibrium point of the system, which is assumed to 

exist and be unique. Then the equilibrium point of  (4), (6), (7) loses asymptotic stability 

as b increases above a certain threshold level, through the (local) birth of a stable limit 

cycle or the death of an unstable limit cycle. (Further bifurcations may occur, creating 

more cycles.) 

PROOF (can be skipped): 

The general necessary and sufficient conditions for stability of a 3x3 system of 

differential equations are (Gandolfo 1997, pp. 251-52): 

 

 

 

STABILITY CONDITIONS: 

(1) Trace (J) < 0, where J is the Jacobian (first derivative matrix) of the system: 
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where a11 is the first element of the first row of J, a 12 is the second element of the first 

row, etc. and the vertical lines indicate a determinant of the matrix within.  

We shall see that the three conditions above are met under assumptions 1 and 2 for a 

sufficiently low value of b: 



(1) the upper left term in Trace (J) is positive and the other two diagonal elements are 

negative. The upper left term can be made as small as desired by reducing b, so 

for sufficiently low b, this condition is met. 

(2) By a series of factorizations and elementary row operations, it can be seen that the 

determinant of J is b.g.h.dY.(cΠ-1).eR. It is clear that this determinant is negative 

for cΠ>1, which is guaranteed by assumptions 1 and 2. Note that this is true 

regardless of the value of b. Hence, condition 2 is met. 

(3) The relevant matrix for condition 3 is: 

J*=
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 The sign pattern of this matrix under assumptions 1 and 2 and for low b is: 

−−−
+−+
+−−

 

Note that the signs of the (1,1) and (2,2) elements of J* depend upon the 

smallness of b. The signs of the (1,2) and (3,2) elements rely on assumptions 1 and 2, 

respectively. I expand this determinant around the first row. The terms of the expansion 

corresponding to the (1,1) and (1,3) elements are unambiguously negative, given the sign 

pattern above. The (1,2)  term of the expansion is: 

- .([ .()..( / dtdRR eheg − Ych. hcheng YdtdR −+− )..1.( / )]+[ .Πch. )..( YY dchb +  ]) 

The first part (to the left of the first square bracket) is positive under Assumption 

1. The first term in square brackets is negative by our assumptions on signs (and n<1). 



The term in the second set of square brackets is positive, but it can be made arbitrarily 

small by making b sufficiently small. Thus, the expression as a whole is negative. 

Hence, for sufficiently small b, all three stability conditions above are met. Now, 

note that if we increase b, the first condition (and, by implication, the third) is no longer 

met. Since the first condition is necessary for stability, we then know that the equilibrium 

becomes unstable for relatively high values of b. [The real (parts of the) roots go from 

negative to positive.] To prove a Hopf bifurcation, I must show that as b increases, two 

roots cross the imaginary axis with nonzero speed (Gandolfo 1997, pp. 475-79). It can be 

shown that the roots are continuous functions of b, allowing an application of the 

intermediate value theorem. Since the stability condition goes from being met to not 

being met and since the determinant of J  (which is the product of the roots of J) stays 

nonzero as b is increased, we know that the loss of stability does not occur through a 

change from two real negative roots to two positive real roots (this would entail a zero 

determinant at the point of crossing). Hence, we know that the loss of stability occurs 

when two of the roots cross the imaginary axis from left to right, while the third root 

remains real and negative. [See Benhabib and Miyao 1981 for a mathematically similar 

proof with more details. In the appendix to that article, it is shown how to prove the 

“nonzero speed” part of the Hopf theorem, which is not really restrictive. (See 

Assumption 3)]. 

 

PROPOSITION 2 

For cП < 1, the system described above is not stable. 

PROOF: 



Stability condition 2 in Proposition 1 is that det J < 0. The determinant is 

b.g.h.dY.(cΠ-1).eR 

This expression is positive if cП < 1. Since Condition 2 is a necessary condition 

for stability, the proposition easily follows. 

 

PROPOSITION 3 

For cП sufficiently large, given other parameters, the system is not stable. 

PROOF: 

Stability condition 1 in Proposition 1 says that the trace of J must be negative. The (1,1) 

term of J is positive and can be made as large as necessary by increasing cП. The (2, 2) 

and (3, 3) elements of J do not involve this parameter. Since stability condition 1 is a 

necessary condition for stability, the result follows.  

What is the economic meaning of the dynamics? Assumption 1 requires that the 

conventional interest rate effect in the “IS” curve be relatively strong compared to the 

term based on the rate of change of the interest rate. This should be a cautionary note 

about the desirability of this innovation, but Minsky and other people who have proposed 

this mechanism have often asserted that it generates instability, anyway. Assumption 2 

indicates that cΠ, the sensitivity of the central bank’s reaction function to inflation, be 

fairly strong. This is a well-known condition for stability of models in which a Taylor 

rule appears (Proposition 2). However, cΠ, as it appears in the inflation equation, is part 

of one of the positive terms in the trace of J (the 1,1 element) and so contributes to the 

eventual generation of instability once it gets too high (Proposition 3). So, highly 

responsive policy has a destabilizing effect insofar as interest rates appear in the price 



equation. (A sufficiently strong “Gibson effect”, given constant values of all the other 

parameters, eventually creates instability.)  Finally, the conditions for a cycle are not 

extremely restrictive.  

 
 

SUMMARY AND CONCLUSIONS 
 

The implication of the foregoing analysis is that one must be aware of possible perverse 

effects in implementing monetary policy. The model above incorporates a positive impact 

of interest rates on prices, with the novel addition of a central bank policy-setting 

function and a Minskyan AD curve that makes output a function of both the level and the 

rate of change of the interest rate.  

An effect arising jointly from the inclusion of interest among the costs of 

production and the central bank’s response to inflation leads to instability for certain 

parameter values. An important policy implication of the stability condition is that 

sufficiently high or low levels of the derivative with respect to inflation in the interest-

rate-setting function always destabilize the model. A moderate value for the inflation 

parameter in the Taylor rule therefore seems desirable from a policy point of view. A 

complicated set of effects is involved, but the key causal chain is that an increase in 

inflation increases the central bank’s tendency to raise rates, which only exacerbates the 

original inflationary problem.  

Assuming the satisfaction of three conditions on the model parameters, some form 

of local cycle exists in inflation-output-interest rate space. The conditions arise, from the 

policy function, as mentioned, and from the relative strength of the effects of the interest 



rate and the rate of change of the interest rate on the demand side. The cycle may take the 

form of a “corridor of stability”, within which all paths lead to the equilibrium, or a stable 

limit cycle, to which all paths lead.   
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