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Abstract 

In this paper we consider the use of bootstrap methods to compute interval 

estimates and perform hypothesis tests for decomposable measures of economic 

inequality. The bootstrap potentially represents a significant gain over available 

asymptotic intervals because it provides an easily implemented solution to the 

Behrens-Fisher problem. Two applications of this approach, using the PSID 

(for the study of taxation) and the XLSY (for the study of youth inequality), 

to the Gini coefficient and Theil’s entropy measures of inequality, are provided. 

The results suggest that (i) statistical inference is essential even when large 

samples are available, and (ii) the bootstrap appears to perform well in this 

setting. 



1. Introduction 

Measures of inequality are widely used to study income and welfare issues. A 

major shortcoming of this literature is the lack of statistical measures of relative size. 

In particular, given a computed value for an inequality measure, is this computed 

value significantly different from a benchmark (such as complete equality)? Further, 

in a dynamic setting, as observed inequality changes, is there a statistically significant 

change in the inequality measure over time ? To answer these questions we need 

interval estimates for these measures. 

It is evident from the empirical research on inequality that interval estimation and 

statistical testing are largely absent at this point in time.l Statistical measures are 

currently available, but all of the existing statistical theory in this area is based on 

asymptotic approximations. 2 The need for statistical inference with small samples 

should be obvious, but even for large samples it may be essential to report statistical 

measures of precision. As Maasoumi (1994) p oint out, the argument that measures 

of precision are unnecessary when large samples are available, because central limit 

theorems ensure convergence of a consistent estimator to the population value, is 

occasionally contradicted by large standard errors. Also, the rate of convergence may 

be slow for these statistics. 

The problem with constructing interval estimates for any of the measures of in- 

equality used in the literature is that they are all nonlinear functions of a random 

variable (usually income), and so do not readily lend themselves to standard statisti- 

cal techniques. Interval estimates are available from asymptotic theory, however. the 

‘Cowell(1989a) is a notable esception. 

2See, for example, Gastwirth (19i4), Gastwirth et al. (1986) and Cowell (1989a). 

(1994) provides a thorough review and some examples of use of asymptotic results. 
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small sample properties of these intervals are not known. Further, all the decompos- 

able inequality measures used in the literature are bounded (e.g. the Gini coefficient 

lies in the [0, l] ’ t m erval), so that application of standard asymptotic results may 

lead to estimated intervals that extend beyond the theoretical bounds of a particular 

measure (e.g. a negative lower bound for Gini). 

An alternative method for computing probability intervals is to bootstrap. The 

bootstrap provides interval estimates drawn from the small sample distribution. These 

interval estimates have been shown to be superior to asymptotic intervals both the- 

3 oretically and in a variety of applications.. Bootstrap intervals are computationally 

inexpensive and easy to calculate, the same method applies to all the inequality 

measures used in the literature, and the bootstrap method automatically takes into 

account any bounds that, apply to a particular measure. Further, since bootstrap 

intervals computed using the percentile met.hod have a clear Bayesian interpretation, 

they provide a straightforward solution to the Behrens-Fisher problem of comparing 

means from two distributions (see section 3). 

Given the potential advantages from bootstrapping, it appears worthwhile to con- 

sider its use as a tool for statistical inference for inequality measures. In this paper 

bootstrap methods arc used to compute standard errors and probability intervals and 

to conduct hypothesis testing for two inequality measures - the Gini coefficient and 

Theil’s entropy. We consider two data sets. the PSID, which provides us with a small 

sample of before and after tax average income within states in the U.S., and the 

NLSY, from which we extract a relatively large sample of income levels for youths in 

the U.S. and consider decompositions of Theil’s measure based on age groupings. 

A brief description of the inequality measures is given in the next section. Section 

3See, e.g., Burr ( 1994), Freedman and Peters (1984a,b) and Hall (1992). 



3 outlines the bootstrap method. The empirical applications are presented in section 

4. Section 5 draws some conclusions. 

2. Measures of Inequality 

Early attempts to measure inequality led to the use of several ad hoc nonparamet- 

ric descriptive statistics. The most popular of these is the Gini coefficient. Though it 

has been shown to be inferior to the more recently developed axiom based measures, 

it has a number of advantages over other ad hoc measures and it is still widely used 

in empirical studies. Further: as Cornell (1989a) points out, while there are good rea- 

sons to restrict attention to decomposable measures, the Gini falls within this class, 

though only in a limited sense.” 

The Gini is defined as one half of the relative mean difference, which is the arith- 

metic average of the absolute value of the difference between all pairs of incomes. It 

is given by: 

i=l j=l 

where yi is the income of the ith individual and pLy is the sample mean. 

G is equal to 1 when inequality is at its maximum and is zero with an equal 

distribution. This measure does not satisfy the property of full additive decompos- 

ability, though less desirable forms of decomposition are possible. Also, this measure 

is most sensitive with transfers toward the middle of the distribution, and least sen- 

sitive toward the two tails. Thus. it should be avoided if activity around the tails is 

of concern, i.e. tax and transfer analysis. However, due to it’s popularity in applied 

research, and since the statistical properties of the Gini are not known (so that it 

4See Cowell (1989a) for a thorough discussion. 
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may possibly be superior to other measures in this regard), we adopt the Gini as one 

example of an inequality measure in our applications. 

The axiomatic approach to the measurement of inequality requires a number of 

desirable axioms to be satisfied. These axioms are symmetry, decomposability, princi- 

ple of transfer, mean independence, and rank dominance. The only class of measures 

satisfying the noted axioms is the Generalized Entropy family of measures. This 

relationship has been established by, among others. Bourguignon (1979), Shorrocks 

(1980), Cowell and Kuga (1981), Foster (1983) and Maasoumi (1986). Some well 

known measures of inequality are special cases of this class of measures. 

In light of the intuitive appeal of the axioms adopted, these measures seem superior 

to the ad hoc nonparametric measures. As a second example for our application, we 

adopt one of Theil’s (1967) measures of inequality. which is a member of this family. 

It is given by: 

(2.2) 
i=l 

where si = yi/ Cyzj yj is the relative share of ith individual’s income. 

The Theil measure is additively decomposable by population subgroups. This is 

a desirable property for an inequality measure since. in practice, it is often important 

to compare inequality both within and between subgroups of the population based 

on various population characteristics (age, race. education, etc.). Suppose there are 

w population subgroups, each with nj members such that Cj nj = n. Then we can 

write 

where sj = Cy& y{/ CL!i yk is the relative share of income for the jth group, si = 

y;‘/ Cy& y! is the share of total group income of the ith individual in the jth group. 

(2.3) 
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The first term on the RHS measures between group inequality, the second measures 

within group inequality. We consider inference for both the aggregate Theil measure 

(2.2) and for the within and between group components given in (2.3) in our large 

sample application of the bootstrap. 

It is worth clarifying at this point that the bootstrap approach we study is directly 

applicable to any other measure of inequality that has been used in the literature 

(including nondecomposable measures). We restrict attention to the Gini and Theil 

measures solely for clarity of exposition. 

3. The Bootstrap Method 

The bootstrap is a method for recovering the distribution of a statistic by employing 

simulation methods to approximate the small sample distribution. It has proved 

superior to asymptotic methods both on theoretical grounds and in a number of 

studies.5 In this section we outline the bootstrap method, and suggest its use for 

obtaining standard errors and probability intervals and for hypothesis testing, for 

measures of inequality. 

Suppose a random sample of size n is observed from a completely unspecified 

probability distribution, F: 

-Yi = Xi, _‘\;; - F, i = 1, . . . . n 

with Xi independent for all i. Let S = (Xl, Xz, . . . . _J&) and z = (~1, ~2, . . . . r,,) 

denote the random sample and its observed realization. Given a specified statistic 

H = H(X, F), possibly dependin, m on both X and the unknown distribution F, we 

5See Efron ( 9 9 1 7 ,1982), Hall (1988.1992). Bhattacharya and Qumsiyeh (1989), Freedman and 
Peters (1984a,b) and Burr (1994). 
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wish to estimate the sampling distribution of H on the basis of the observed data 2. 

The bootstrap method is as follows:6 

1. Construct the sample probability distribution k, putting mass l/n at each 

point x1, . . . . 2,. 

2. With $ fixed, draw a random sample of size n, with replacement, from @, say 

X” = x*. This is the bootstrap sample. 

3. Approximate the sampling distribution of H by the bootstrap distribution of 

H* = H(X*,$‘). 

4. The bootstrap 

peated realizations of 

and the histogram of 

distribution is obtained by Monte Carlo approximation. Re- 

X” are generated b>- t&in, c random samples of size n from p’, 

the correspondin g values of H” = H(x*“, k), for i = I, . . . . m 

samples of size n, is taken as an approximation to the actual bootstrap distribution. 

Given this bootstrap estimate of the sampling distribution of H, we can then 

calculate standard 

testing. 

The bootstrap 

errors, confidence or probability intervals, and conduct hypothesis 

provides a numerical approximation to the distribution of inter- 

est, F, that is similar to a high-order Edgeworth expansion (an approximation to 

a distribution function that involves a series expansion around the Normal distribu- 

tion). Edgeworth expansions can represent considerable improvements over Normal 

approximations, and the bootstrap is typically superior to a practically calculable 

( i.e. short) Edgeworth expansion. Bhattacharya and Qumsiyeh (1989) show that 

the bootstrap estimate of F outpeforms the short Edgeworth approximation in any 

Lp metric. Further, Hall (1992) h s ows that if values of x are of larger order than 

6See Efron (1979,1982) for a full exposition. 
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n1i6 , the Edgeworth series will either not converge or not adequately describe the tail 

probabilities. For example, when n = 20, II l/6 = 1.648 which is approximately the 5% 

point of a Standard Normal distribution. The bootstrap on the other hand, provides 

an accurate approximation to tail probabilities for values of z as large as o(n’j3). 

For n = 20, n1j3 = 2.714, which has an approximate tail probability of 0.003 for the 

Standard Normal. These crude calculations suggest that the bootstrap provides far 

more accurate estimates of tail probabilities than asymptotic approximations. 7 

Tail probability values for hypothesis tests with regard to a benchmark value 

can be calculated directly from the bootstrap distribution in the same manner as 

probability intervals. Often however. we are more interested in comparing different 

values of an inequality measure, such as for different points in time (has inequality 

increased or decreased over time?). This involves comparison of two values of the 

statistic H,, each with it’s own samplin g distribution, F,, t = 1,2. We suggest the 

following test for this case, analogous to the comparison of two means from two 

different samples. 

Consider the statistic D = HI - H2, where HI and Hz are the two values of the 

inequality measure we wish to compare. The distribution of D can be bootstrapped in 

the same manner used tc obtain distributions for Hr and Hz. Tail probability values 

for hypotheses regarding D can be calculated directly from the bootstrap distribution 

IQ). 

Note that the interpretation of t,ail values from the bootstrap distribution as prob- 

abilities has a legitimate justification. As Efron (1982) points out, if we take the prior 

distribution of the density function from F to be a Dirichlet distribution with param- 

‘See Hall (1992) for details. 



eter u, and let a -+ 0 to represent prior ignorance, then the bootstrap distribution is 

a close (discrete) approximation to the posterior density from Bayesian inference.’ 

The hypothesis test we conduct using the statistic D involves the comparison of 

means of two distributions, which has become known as the Behrens-Fisher problem. 

The problem is a very difficult one within the classical hypothesis testing framework 

and consequently there is no generally accepted classical procedure for this prob- 

lem. By contrast, the Bayesian procedure is straightforward.g The bootstrap method 

we adopt is a simple implementation of this Bayesian procedure. If the bootstrap 

performs well in this situation, this represents an important advantage of bootstrap 

methods over the use of asymptotic interval estimates. 

Several alternative methods for calculating bootstrap intervals are available. We 

use what has become known as the “percentile method” to calculate tail probabilities 

for several reasons: it performed well in a recent comparison of the different methods 

by Burr (1994), it is the easiest to compute. and unlike the other methods, it has 

a clear interpretation as an approximation to a Bayesian posterior probability inter- 

val (allowing a straightforward solution to the Behrens-Fisher problem). The other 

method most often recommended is the “boot-t”. The boot-t requires estimation of 

the standard error by some other method (usually the asymptotic estimate). Burr 

(1994) does not recommend the boot-t because she found it to be very unstable. As 

Burr suggests, use of the iterated bootstrap may improve the performance of the 

boot-t, but this is computationally very espensive. We compare “naive” boot-t in- 

tervals (a symmetric interval around the sample estimate of H using the bootstrap 

estimate of the standard error and standard t tables [see Efron (1982)]) with the per- 

%Zee Efron (1982), p .81-82, and Rubin (1981). 

gSee DeGroot (1986) and Jaynes (1976). 
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centile intervals for a large sample in section 4 and find close agreement. However, 

we especially prefer the percentile method for small samples because it automatically 

takes into account bounds on the statistic, whereas the boot-t can lead to confidence 

intervals that are wider than is theoretically possible.” 

An important caveat regarding application of the bootstrap is that independence 

of observations in the sample, Xi, is required for step 2., sampling with replacement, 

to be valid. This does not necessarily preclude use of the method in dynamic settings 

however. Provided an independent cross section sample for each time period is used 

to form the bootstrap distribution for that time period, the dependence between 

time periods will automatically be taken into account, i.e. the bootstrap distribution 

obtained in a given period is conditional on the data observed in previous periods if 

the current realizations are statistically dependent on previous realizations (in this 

case the bootstrap distribution is an estimate of the Markov transition probabilities 

&%lXt-1). N o ice that unconditional inference in this setting would imply a violation t 

of the Likelihood Principle. Examples of this use of the bootstrap are provided in the 

following section. 

4. Empirical Applications 

It has often been argued that the large samples typically available for the empirical 

measurement of inequality obviate the need for statistical hypothesis testing. In what 

follows we study the usefulness of the bootstrap approach both with small and large 

samples. We also use the bootstrap with decompositions of the Theil measure, which 

can lead to inference with very small samples. To allow comparison we compute the 

asymptotic standard errors for the Gini, Theil and decompositions of Theil using the 

loSee the discussions by Efron, and Buckland, Garthwaite and Love11 following Hall (1988). 
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results given by Cowell (1989a).” 

4.1. Empirical Implementation 

The empirical studies in this section were carried out using GAUSS 3.0 on a DOS 

based PC with a 486 50 mhz processor. _\s one would expect, run times varied 

considerably depending on the sample size. etc. However, to give some idea of the 

computational burden involved we observed the following run times. For the small 

sample study (52 observations for each year). it took approximately 1 min., 30 sec. to 

produce all the results reported in Tables 1 and 2. Tables 3 and 4 took approximately 

2 min., 36 sec., and Table 5 took about 1 min. For the large sample study (4266 

observations per year) it took approximatel!- 61 mins., 42 sec. to produce Table 6, 

and Table 7 took approximately 3 hrs. and 41 mins. The run time for Table 8 was 30 

mins, 18 sec. and for Table 9, 3 hrs, 7 mins. Xote that Table 9 was computationally 

less burdensome than Table 7. This is because Gini took far longer than Theil to 

compute in all cases, despite using the faster algorithm for Gini suggested by Cowell 

(1989b). 

We calculated the bootstrap distribution of each statistic using 500 iterations 

of the procedure outlined in section 3. As a check, for the small sample study we 

increased the number of iterations to 2000 and obtained almost identical results as 

with 500 iterations. 

4.2. A Small Sample Study 

For our small sample we use data from t,he Panel Study of Income Dynamics 

(PSID) for 50 states, the District of Columbia: and those of Americans living outside 

“We note a typographical error in Cowell’s expression for the variance of the between group Theil 
measure; the RHS of his equation (42) should be (nj/nmll)(lnoj + 1). 
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of the United States. The data consist of 52 observations per year, from 1983 to 

1988, on the mean level of income before and after taxes. There are two ways to 

evaluate the usefulness of hypothesis testing with this data set. First, we compare 

the observed change in inequality over time. Second, we test the significance of the 

progressivity in taxes to reduce the after tax inequality in each time period. 

It has been the norm for most empiricists in the field of income distribution to 

calculate an index of inequality and provide an interpretation of the results. Most 

often the calculated results pose more questions than answers. Tables 1 and 2 present 

the calculated inequality based on Gini and Theil measures of inequality. Inequality 

in before and after tax income has fluctuated from 1983 to 1988. However, in a 

given year, post-tax inequality among states has increased regardless of our choice of 

inequality measure. Casual observation suggests a trend from one year to the next, 

and from pre- to post-tax income. This observation is inadequate however, since one 

cannot say whether the observed changes are significant. We provide several relevant 

statistical measures of precision to address this inadequacy. First, bootstrap standard 

errors and probability intervals are provided and compared with asymptotic standard 

errors. Second, hypothesis tests for changes in the calculated inequalities between 

two periods are conducted (for which there is no asymptotic equivalent). 

Our starting point is to look at bootstrap standard errors and .99 and .95 prob- 

ability intervals for the small sample. Tables 1 and 2 present these statistics for pre- 

and post-tax income using the Gini and Theil measures of inequality. 

A comparison of the bootstrap and asymptotic standard errors reported in Tables 

1 and 2 indicate that for the Theil measure they are similar, whereas for Gini there is a 

substantial difference in these estimates. This leads to the question: which estimates 

of the standard error are the best ? Since the underlying small sample distribution 
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for these statistics is not known, there is no definite yardstick for comparison. For 

this same reason, it is also difficult to construct a Monte Carlo study to address this 

issue. 

One possible explanation is that the theoretical bounds on Gini have an important 

effect truncating the tails of the distribution in a small sample. The small sample dis- 

tribution may also be skewed. If we consider the bootstrap as a numerical evaluation 

of an Edgeworth expansion, then it can be shown that the third cumulant (skew- 

ness) provides the largest gain in the accuracy of the approximation over a Normal 

approximation. ‘* Thus, if the sample distribution is skewed, we would theoretically 

expect the bootstrap to outperform a Normal approximation, and the more skewed 

the distribution the greater the difference in the bootstrap and Normal intervals. 

As demonstrated in Tables 1 and 2: there is a substantial amount of overlap 

between years for both measures of inequality and different definitions of income. 

This is true for both .99 and .95 probability intervals. Thus, one cannot say with 

any degree of confidence whether the observed changes are significant. For example, 

measured inequality based on Gini in 1983 and 1984 shows a decline from .176 to 

.155, but the confidence intervals overlap substantially at 99%, with upper bounds of 

.248 and .193 and lower bounds of .113 and .107. Comparing changes in Gini from 

pre-tax income of .176 to post-tax income of .188. one observes a similar overlap. 

Tests of these hypotheses are needed to make the observed changes from one year to 

the next, and from pre- to post-tax income, meaningful. 

Our solution is to compare the observed changes in inequality from one year to the 

next, or any succeeding year, and perform hvpothesis testing to gauge the significant 

of such a change. Note that since our statistics are based on a cross section of 

12See Hall (1992) for details. 
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observations that can reasonably be assumed to be independent within each period, 

use of the bootstrap is valid in this case. Tables 3 and 4 show the change in inequality 

for every pair of years from 1983 to 1988 based on Gini and Theil measures, for both 

before and after tax income. This is followed by standard errors for the estimate of 

the observed change, and the probability that such a change is less than zero, p (i.e., 

p = Pr(D < O), so that 1 -p = Pr(D > 0)). 

Using pre-tax income, and comparing 1983 to all other succeeding years for the 

Gini and Theil measures (Table 3), shows that only the change from 1983 to 1988 

for the Theil measure is significant at the 10% level (p = 0.065). All other pair 

comparisons for 1983 are insignificant at the 10% level. A similar comparison for 

1984 to each of the succeeding years shows that the change from 1984 to 1987 is 

significant at the 5% level for Gini and at the 10% level for Theil. All other paired 

comparisons are insignificant for 1984. Paired comparisons of 1985 through 1988 show 

that only the change from 1986 to 1987 is significant (at the 10% level for Gini and 

at the 5% level for Theil). A comparison of changes from 1986 to 1987 and 1988 

suggests that only the observed changes from 1986 to 1987 are significant at the 5% 

level. The paired comparison of changes from 1987 to 1988 is insignificant. 

The results based on after tax income are shown in Table 4. A paired comparison 

of all possible changes shows that none of the observed changes are significant at the 

10% level. The only observed significant change is from 1984 to 1987, for which p is 

.106. 

Often one would like to evaluate the impact of taxes, particularly when taxes 

are changing over time on the distribution of income. Table 5 shows the changes in 

inequality from before to after tax income. The only observed significant change is 

for 1983 based on the Theil measure of inequality, where p is .904. Thus, the observed 
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change is significant at the 10% level. For all other years the observed changes are 

not significant at the 10% level. 

4.3. A Large Sample Study 

For our large sample we use the National Longitudinal Survey of Youth (NLSY) 

1979-1989, which contains individuals who were 14-21 years of age in 1979. We use 

data from 1984-89. Thus, in 1984 these individuals were between the ages of 19-26 

and 24-31 years of age in 1989. The same individuals are followed over six years. The 

shorter duration is to minimize the effects of attrition or dropouts. There are 4266 

observations for the duration under consideration. Individuals with positive income 

who are active in the labor market were chosen. Their nominal annual earnings has 

been adjusted to real earnings to reflect the change in price levels over time using a 

1982 base year price. Reported income for these individuals has been top coded by 

the NLSY. According to the NLSY their method of top coding was changed for 1989. 

Thus, the top coding procedure has been adjusted to be consistent with previous 

years. The top coding values used are, $75,001 for 1984. $100,001 after 1984, and was 

based on average income of those earning more than $100,000 in 1989. A draw back 

of top coding is its uncferestimation of inequality. 

Youth earnings inequality from 1984-1989 is reported in Table 6. The results 

suggest a decline of overall annual inequality. This decline is observed under two 

different choices of the inequality measure. The magnitude of the observed inequality 

is smaller with Theil’s measure compared to the Gini coefficient, whereas the Gini 

has lower standard errors than Theil’s for the duration under consideration. 

The questions of concern at this point are two-fold. First, is the measured inequal- 

ity for each period significant ? Second, is the change in inequality from one period 
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to the next significant ? Gini declines in each of the six periods. However, one cannot 

say with any confidence that a decline of Gini from .3754 in 1986 to .3699 in 1987 is 

significant without interval estimates. The same is true with regard to the observed 

decline of Theil from .2512 in 1984 to .2015 in 1989. Statistical inference is required 

to make such observations. Bootstrapping allows us to measure standard errors and 

conduct such tests of statistical significance. As in the small sample study, since the 

bootstrap is employed using cross section data on individuals for each time period (or 

pairwise comparison), it is unlikely that the independence assumption is violated. 

The two major concerns with respect to measured inequality can be addressed 

within the context of Table 6. Firstly, it is evident from the calculated upper and 

lower bounds, that the value of the inequality measures that represents complete 

equality (zero for both measures) falls well outside the confidence intervals for all 

periods. This observation is true at both 99% and 95% confidence levels and for 

both measures of inequality. Thus: we can say with near certainty that the measured 

inequality is significantly different from complete equality. 

Secondly, as the measured inequality declines over time, it is more difficult to say 

that this decline is significant. As is evident from Table 6, we cannot say that the 

decline from one period to the next is significant because the bounds from one period 

to the next overlap. For example, at 99% there is considerable overlap between 

the lower and upper bounds for Gini for 1986 (0.3645,0.3863) with those for 1987 

(0.3600,0.3806). This same pattern is true for Theil’s measure of inequality from one 

period to the next. However: as we extend the duration under consideration to more 

than two years, the observed decline in inequality becomes significant. Generally, the 

bounds overlap less the further apart the years under consideration. For example 

when 1985 and 1987 are considered the .95 probability intervals do not overlap, but 
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the .99 intervals do. As the duration increases: the bounds move further apart; when 

1985 is compared with 1988, the .99 probability interval does not overlap at all, so 

this observed decline is highly significant. 

Comparing the bootstrap and asymptotic standard errors we find that with a 

sample as large as this the asymptotic standard errors are very similar to those from 

bootstrapping, though they are still slightl- larger in some cases. The probability 

intervals in Table 6 were obtained directly from the bootstrap distribution, so no 

assumptions are made about the a priori form of this distribution. Alternatively, 

confidence intervals can be calculated by the naive boot-t method using the standard 

errors from Table 6, rt:lying on standard t tables for the significance point, as sug- 

gested by Tukey. l3 We found that these alternative intervals are very similar for our 

data, for example, for Theil 1989, the estimated standard error is 0.0043. From t 

tables, the critical t value for a 5% significance level is 1.96. The estimated value of 

Theil is 0.2015, therefore, a 95% confidence interval based on this standard error is 

(0.1931,0.2099), h h w ic compares closely with the bootstrap interval (0.1934,0.2101). 

Use of t tables however, involves implicit assumptions not made when using the 

bootstrap distribution directly, for example, the t distribution is symmetric, whereas 

the bootstrap distribution can be skewed (income distributions are typically skewed). 

A critical problem with use oft tables is that the t distribution assumes that the statis- 

tic under study is unbounded. Both the Gini and the Theil measures are bounded 

above zero (Gini is also bounded below unity), which is automatically taken into ac- 

count when using the bootstrap distribution directly. This problem also applies to 

asymptotic standard errors, and so the bootstrap intervals can be considered superior 

to asymptotic intervals, even in large samples, from a theoretical standpoint. 

13See Efron (1979). 
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A statistical test for change in inequality, for each pair of calculated inequalities, 

is provided in Table 7, where tail probability values, p, for D = H1 - Hz are provided. 

It is evident from the paired comparisons between 1984 and 1989 that, with three 

exceptions, all observed changes are significant at the 5% level based on Gini and 

Theil measures of inequality. The exceptions are 1984-1985, 1986-1987, and 1988- 

1989. The first two are significant at the 10% level while the latter is not. So even 

with a large sample, one has to reserve judgment and base conclusions on statistical 

inference. 

4.4. Decomposition by Population Subgroups 

Obviously there are significant differences in income levels among individuals due 

to differing characteristics, such as age, race, gender and human capital. For policy 

formulation it is often important to provide some evidence of the degree of inequality 

both due to these factors, and after these factors have been taken into account. This 

suggests the need to consider decompositions of the inequality measures. 

To evaluate the bootstrap in this context, individuals in the NLSY sample were 

split into three cohorts based on their age in 1984; 23-26, 27-29 and 30-32. Tables 

8 and 9 report the results for the Theil measure decomposed by age groupings. The 

results suggest that there is very little inequality between these groups, so that most 

of the observed inequality is due to within group factors. 

The bootstrap and asymptotic standard errors compare closely for the within 

group measure, but the asymptotic s.e’s are considerably smaller than the bootstrap 

s.e’s for the between group measure (e.g. 0.0003 compared to 0.0009 for 1987 and 

1988) suggesting that the asymptotic s.e’s may be biased downwards. Table 9 in- 

dicates that there is a significant increase in between group inequality from 1984 
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to 1988, whereas within group inequality declines significantly during this period. 

In most cases the change in inequality from one period to the next is significant. 

There are notable exceptions however. For example, between group inequality does 

not change significantly from 1987 to 1988 and 1989, and none of the changes are 

significant at the 10% level from 1988 to 1989. 

5. Conclusion 

Using the PSID and NLSY income data, bootstrap estimates of standard errors and 

probability intervals were calculated for the Gini coefficient and Theil’s entropy mea- 

sure of inequality. The bootstrap was also used to perform hypothesis tests regarding 

the statistical significance of changes in these inequality measures. We find that 

statistical inference is essential even with a sample of over 4,000 observations. 

The bootstrap provides an alternative method of inference to asymptotic stan- 

dard errors. We find that the bootstrap estimates are easy to compute and compare 

favourably to asymptotic standard errors. There is also an extensive theoretical lit- 

erature showing that the bootstrap improves upon asymptotic intervals under very 

general conditions. I4 Further, theoretical bounds on the various inequality measures 

are automatically taken into account when using the percentile method to compute 

intervals. The percentile method also has a clear Bayesian interpretation which, in 

light of the evidence suggesting superiority of Bayesian intervals (particularly when 

faced with the Behrens-Fisher problem), is comforting.15 

Of the two inequality measures considered. the Theil measure is generally con- 

sidered superior on theoretical grounds. M-e find further reason to prefer the Theil 

14See Hall (1992) and Bhattacharya and Qumsiyeh (1989). 
15See, for example, Jaynes (1976) and DeGroot (1986). 
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measure for empirical studies: it is somewhat less computationally burdensome and, 

more importantly, the bootstrap estimates of standard errors compare more closely 

with the asymptotic estimates in the small sample study, suggesting that the small 

sample distribution of the Gini may be considerably different from the Normal. 

The fact that decomposable inequality measures are nonparametric, highly non- 

linear functions of the observed data, coupled with the fact that there is no generally 

accepted asymptotic procedure for conducting the hypothesis tests performed in sec- 

tion 4, leads us to conclude that the bootstrap may be the only currently viable 

method for statistical inference 1vit.h regard to changes in inequality measures over 

time. 

Further work needed involves comparison of the performance of the different boot- 

strap methods, though a review of previous studies of the bootstrap suggests that 

potential gains in accuracy are likely to be of second order at best.16 

=c.f. Burr (1994). 
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TABLE 1: BOOTSTRAP STANDARD ERRORS AND CONFIDENCE INTERVALS 
PSID BEFORE TAX INCOME DATA (SMALL SAMPLE) 

1983 1984 1985 1986 1987 1988 

Gini .176 
S.E. .029 
A.S.E. .039 

99% U.B. .248 
99% L.B. .113 

95% U.B. .224 
95% L.B. .124 

Theil .063 
S.E. .022 
A.S.E. .025 

99% U.B. .124 
99% L.B. .020 

95% U.B. .106 
95% L.B. .025 

Sample size = 52 

,155 .161 .159 .183 .171 
.018 .021 .022 .022 .021 
.029 .030 .031 .036 .031 

.193 .209 .210 .238 .217 

.107 .112 .107 .120 .128 

.182 .194 .193 .227 .203 

.120 .123 .120 .138 .138 

.041 .045 .046 .063 .051 

.OlO .012 .013 .015 .012 

.OlO .012 .014 .018 .012 

.067 .076 .084 .105 .083 

.020 .020 .019 .026 .029 

.057 .067 .069 .095 .071 

.025 .026 .024 .036 .033 

S.E. = bootstrap standard error of the estimate 
A.S.E. = asymptotic standard error of the estimate 
U.B. = Upper Bound 
L.B. = Lower Bound 



TABLE 2: BOOTSTRAP STANDARD ERRORS AND CONFIDENCE INTERVALS 
PSID AFTER TAX INCOME DATA (SMALL SAMPLE) 

1983 1984 1985 1986 1987 1988 

Gini .188 
S.E. .036 
A.S.E. .044 

99% U.B. .261 
99% L.B. .115 

95% U.B. .239 
95% L.B. ,127 

.168 .174 .173 .186 .178 

.018 .020 .020 .025 .021 

.029 .029 .030 .034 .031 

.214 .214 .216 .248 .221 

.116 ,125 .126 .127 .126 

.200 .210 .203 .222 .207 

.133 .139 .139 .141 ,142 

Theil .074 
S.E. .031 
A.S.E. .032 

99% U.B. .143 
99% L.B. .024 

95% U.B. .122 
95% L.B. .027 

Sample size = 52 

.047 ,052 .051 .062 .053 

.OlO .Oll .012 .015 .Oll 

.Oll .Oll .012 .015 .012 

.076 .079 .084 .103 .079 

.023 .025 ,027 .028 .028 

.065 .068 .071 .085 .072 

.030 .033 .033 .036 .034 



TABLE 3: HYPOTHESIS TESTS FOR GINI AND THEIL MEASURES 
PSID BEFORE TAX INCOME DATA (SMALL SAMPLE) 

1983 Gini 

Theil 

1984 Gini 

Theil 

1985 Gini 

Theil 

1986 Gini 

Theil 

1987 Gini 

Theil 

D 
S.E. 

; 
S.E. 

P 

D .0071 .0046 .0282 .0167 
S.E. .0147 .0116 .0168 .0177 

P .275 .282 .025 .202 
D .0046 .0051 .0215 .0097 
S.E. .0083 .0060 .Olll .0091 

P .242 .172 .067 .147 

D 
S.E. 

L 
S.E. 

P 

D .0236 .0120 
S.E. .0128 .0160 

P .037 .240 
D .0164 .0046 
S.E. .0079 .0088 

P .020 .295 

D .0115 
S.E. .0168 

P .692 
D .0117 
S.E. .0113 

P .815 

1984 1985 1986 1987 1988 

.0217 .0145 .0170 .0065 .0049 

.0272 .0287 .0293 .0250 .0252 

.745 .610 .640 .410 .522 

.0218 .0171 .0166 .0002 .0120 

.0223 .0227 .0236 .0212 .0208 

.745 .660 .637 .465 .065 

.0025 .0210 .0095 

.0109 .0127 .0177 

.512 .070 .277 

.0004 .0168 .0051 

.0068 .0083 .OlOl 

.410 .032 .270 

D = Difference in inequality measure (changes in Gini and Theil respectively) 
S.E. = bootstrap standard error of D 
p = probability that D is less than zero 



TABLE 4: HYPOTHESIS TESTS FOR GIN1 AND THEIL MEASURES 
PSID AFTER TAX INCOME DATA (SMALL SAMPLE) 

1983 Gini 

Theil 

1984 Gini 

Theil 

1985 Gini 

Theil 

1986 Gini 

Theil 

1987 Gini 

Theil 

D 

S.E. 

: 

S.E. 

P 

D .0066 .0047 .0179 .0088 

S.E. .0120 .0162 .0186 .0149 

P .304 .358 .160 .300 

D .0037 .0034 .0140 .0054 
S.E. .0062 .0081 .0109 .0081 

P .290 .314 .106 .270 

D 

S.E. 

: 

S.E. 

P 

D .0131 .0040 

S.E. .0188 .0138 

P ,250 ,412 

D .0105 .0019 
S.E. .0107 .0075 

P .188 .444 

D .0091 

S.E. .0077 

P .774 

D .0085 
S.E. .0077 

P .878 

1984 1985 1986 1987 1988 

.0198 .0132 .0150 .0018 .OllO 

.0309 .0315 .0319 .0248 .0310 

.678 .618 .656 .536 .582 

.0268 .0231 .0234 .0128 .0214 

.0248 .0280 .0283 .0221 .0297 

.726 .690 .692 .658 .678 

.0018 .0113 .0022 

.0134 .0156 .0127 

.584 .294 .434 

.0002 .0103 .0017 

.0071 .0094 .0069 

.532 .174 .426 



TABLE 5: HYPOTHESIS TESTS FOR GINI AND THEIL MEASURES 
PSID BEFORE AND AFTER INCOME TAX DATA (SMALL SAMPLE) 

1983 1984 1985 1986 1987 1988 

Gini D .0118 .0137 .0131 .0138 .0034 .0058 
S.E. .0104 .0115 .0130 .0136 .0106 .0057 
P .866 .880 .854 .870 .662 .848 

Theil D .0117 .0066 .0056 .0049 .0008 .0023 
S.E. .0080 .0061 .0077 .0080 .0085 .0032 
P .904 .854 .774 .758 .474 .760 



TABLE 6: BOOTSTRAP STANDARD ERRORS AND CONFIDENCE INTERVALS 
NLsY INCOME DATA (LARGE SAMPLE) 

1984 1985 1986 1987 1988 1989 

Gini .3975 .3901 .3754 .3699 .3539 .3513 
S.E. .0037 .0038 .0038 .0038 .0036 .0038 
A.S.E. .0036 .0038 .0038 .0037 .0036 .0035 

99% U.B. .4074 .3996 .3863 .3806 .3632 .3605 
99% L.B. .3879 .3795 .3645 .3600 .3442 .3411 

95% U.B. .4052 .3975 .3827 .3779 .3606 .3583 
95% L.B. .3893 .3822 .3677 .3625 .3464 .3441 

Theil .2569 .2504 .2322 .2245 .2050 .2015 
S.E. .0047 .0051 .0048 .0045 .0042 .0041 
A.S.E. .0046 .0051 .0048 .0045 .0041 .0040 

99% U.B. .2700 .2630 .2444 .2373 .2155 .2120 
99% L.B. .2446 .2360 .2205 .2126 .1942 .1898 

95% U.B. .2668 .2600 .2413 .2342 .2129 .2101 
95% L.B. .2466 .2402 .2228 .2156 .1964 .1934 

Sample size = 4266 



TABLE 7: HYPOTHESIS TESTS FOR GIN1 AND THEIL MEASURES 
NLSY INCOME DATA (LARGE SAMPLE) 

1984 Gini 

Theil 

1985 Gini 

Theil 

1986 Gini 

Theil 

1987 Gini 

Theil 

1988 Gini 

Theil 

D .0074 .0221 .0276 .0436 .0461 
S.E. .0037 .0039 .0042 .0043 .0042 

P .020 .o .O .O .O 
D .0065 .0247 .0324 .0519 .0553 
S.E. .0049 .0049 .0053 .0053 .0052 

P .090 .o .O .O .O 

D .0147 .0202 .0362 .0387 
S.E. .0037 .0037 .0043 .0042 

P .O .O .O .O 
D .0182 .0259 .0454 .0489 
S.E. .0049 .0049 .0056 .0053 

P .O .O .O .O 

D 
S.E. 

; 
S.E. 

P 

D 
S.E. 

L 
S.E. 

P 

D .0035 
S.E. .0030 

P .224 
D .0034 
S.E. .a035 

P .172 

1985 1986 1987 1988 1989 

.0054 .0215 .0240 

.0036 .0039 .0041 

.072 .O .O 

.0077 .0271 .0306 

.0047 .0048 .0050 

.054 .O .O 

.0160 .0185 

.0033 .0037 

.O .O 

.0194 .0229 

.0040 .0044 

.O .O 



TABLE 8: BOOTSTRAP STANDARD ERRORS FOR AGE GROUP DECOMPOSITIONS 
NLsY INCOME DATA (LARGE SAMPLE) 

1984 1985 1986 1987 1988 1989 

Theil .2569 .2504 .2322 .2245 .2050 .2015 
S.E. .0047 .0051 .0048 .0045 .0042 .0041 
A.S.E. .0046 .0051 .0048 .0045 .0041 .0040 

BTheil .0004 .0012 .0020 .0034 .0034 .0027 
S.E. .0003 .0005 .0007 .0009 .0009 .0008 
A.S.E. .0003 .0003 .0003 .0003 .0003 .0003 

WTheil .2566 .2493 .2302 .2211 .2016 .1988 
S.E. .0047 .0051 .0049 .0045 .0041 .0041 
A.S.E. .0046 .0050 .0048 .0045 .0041 .0039 

Sample size = 4266 

BTheil = between group Theil measure 
WTheil = within group Theil measure 



TABLE 9: HYPOTHESIS TESTS FOR AGE GROUP DECOMPOSITIONS 

1984 Theil D 

S.E. 

P 
BTheil D 

S.E. 

P 
WTheil D 

S.E. 

P 

1985 1986 1987 1988 1989 

.0065 .0248 .0324 .0519 .0554 

.0048 .0052 .0054 .0054 .0053 

.066 .O .O .O .O 
-. 0008 -.0016 - . . 0030 -. 0031 -. 0024 

.0004 .0006 .0009 .0009 .0008 

.990 .998 1.000 1.000 1.000 

.0073 .0264 .0355 .0550 .0578 

.0048 .0052 .0054 .0054 .0053 

.046 .O .O .O .O 

1985 Theil D 

S.E. 

P 
BTheil D 

S.E. 

WTheil L 

S.E. 

P 

.0183 .0260 .0454 .0489 

.0048 .0055 .0052 .0054 

.O .O .O .O 

..0008 - ..0022 - ,. 0022 -.0015 

.0005 .0008 .0008 .0007 

.9481 .O .998 .988 

.0191 .0282 .0477 .0504 

.0048 .0054 .0052 .0053 

.O .O .O .O 

1986 Theil D .0077 .0272 .0306 

S.E. .0049 .0049 .0052 

P .058 .O .O 

BTheil D ..0014 - ‘. 0015 -. 0008 

S.E. .0008 .0008 .0007 

P .968 .978 .852 

WTheil D .0091 .0286 .0314 
S.E. .0049 .0049 .0053 

P .028 .O .O 

1987 Theil D .0195 .0229 
S.E. .0043 .0043 

P .O .O 

BTheil D ‘. 0000 .0007 
S.E. .0008 .0008 

P .542 .210 

WTheil D .0195 .0223 
S.E. .0043 .0043 

P .O .O 

1988 Theil D 

S.E. 

P 
BTheil D 

S.E. 

WTheil E 

S.E. 

P 

.0035 

.0036 

.158 

.0007 

.0006 

.126 

.0028 

.0036 

.214 


