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ABSTRACT  

Since Christopher Sims’s “Macroeconomics and Reality” (1980), macroeconomists have used 

structural VARs, or vector autoregressions, for policy analysis. Constructing the impulse-

response functions and variance decompositions that are central to this literature requires 

factoring the variance-covariance matrix of innovations from the VAR. This paper presents 

evidence consistent with the hypothesis that at least some elements of this matrix are infinite 

for one monetary VAR, as the innovations have stable, non-Gaussian distributions, with 

characteristic exponents ranging from 1.5504 to 1.7734 according to ML estimates. Hence, 

Cholesky and other factorizations that would normally be used to identify structural residuals 

from the VAR are impossible. 
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I. INTRODUCTION 

 

Since Sims (1980), economists have been using monetary structural vector autoregressions 

(VARs) to measure the effects of policy changes and test models.1 This paper provides 

estimates of the characteristic exponents of the distributions of the innovations in the reduced-

form of one such VAR.  

This introduction describes the properties of stable distributions and briefly describes 

the mathematics of VARs. It then shows that when at least one error term in a VAR has a 

stable, non-Gaussian distribution, it is impossible to construct meaningful impulse response 

functions and variance decompositions, the key tools of structural VAR analysis. The reason is 

simple: stable, non-Gaussian distributions do not have finite variances, making structural 

factorizations nonsensical. Finally, the introduction outlines the remainder of the paper. 

A random variable X has a stable distribution if it has a domain of attraction, i.e., if 

there is a sequence of i.i.d. random variables Y1, Y2,…. and sequences of positive numbers 

{dn} and real numbers {an}, such that  

 

Xa
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YYY d
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n ⇒+
+++ ...21  

 

 

where the arrow symbol means “converges in distribution” (Samorodnitzky and Taqqu 1994: 

5). If the Y’s have a finite variance, X has a normal distribution, which is the most well-known 

stable distribution.  

Furthermore, there is an equivalent definition: a random variable X has a stable 

distribution if for each n greater than or equal to 2, there is a positive number Cn and a real 

number Dn such that 
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1 See, for example, Galí (2008: 8–9) and the references therein. 
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where X1, X2,…, Xn are independent copies of X and the Cn and Dn are constants, and where 

the arrow symbol means “equals in distribution” (Samorodnitzky and Taqqu 1994: 3). It turns 

out that  

 
α/1nCn =  

 

where α is known as the characteristic exponent of the distribution. Clearly then, when the Xi 

are normally distributed, α = 2. Alpha takes on values in the interval (0, 2], with lower α’s 

indicating more high-peaked and thick-tailed distributions. Only two stable distributions with α 

< 2 have explicit density formulas: the Cauchy and Lèvy distributions. The stable distributions 

are a four-parameter family: α, β for skew, γ for scale, and δ for location. Figure 1 shows the 

standard normal distribution and a symmetric, stable distribution of the same scale with α = 

1.7.

Figure 1. Densities of Standard Normal Distribution and Symmetric Stable with Alpha = 1.7 
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The most important feature of these distributions from the point of view of this paper is that 

when α < 2, the variance does not exist, and for α less than or equal to 1, neither the mean nor 

the variance exist. Equivalently, these moments do not converge, or are infinite. 

This paper examines the implications of infinite variances of innovations for structural 

monetary VARs. To see these implications, recall that the structural form of a VAR of order p 

is 

 

tptpttt YBYBYBAY η++++= −−− ....2211  

 

where A and the Bis are n-by-n matrices of parameters, with A nonsingular; the Yts are n-

vectors of economic and monetary variables at time t; and η is a n-vector of disturbances. As 

we will see, the problem is to identify A, and that is not always possible, even with the usual 

identifying conditions. It is assumed that  
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where I is the n-by-n identity matrix. The reduced form of the VAR can be written 

 

tptpttt YCYCYCY ε++++= −−− ....2211       (1) 

 

where  
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The variance-covariance matrix of εt is 

 

')''()'( 1111 −−−− === AAAAEEV tt ηηεε        (3) 



 

 

 

5

To find the needed parameters, one first estimates each equation in (1) using least 

squares.2 The residuals from the regressions are consistent estimates of the εt, but most 

important uses of structural VARs require that we recover the ηt. To find ηt, one first obtains 

V*, the sample variance-covariance matrix of the εt. Then, assuming A is lower triangular, we 

can get an estimate of it by decomposing V* into the product of a lower triangular matrix A-1 

and its transpose A-1' (the Cholesky factorization). Once the factorization has been 

accomplished, the ηt (the structural disturbances) can be identified from 

 

tt Aεη =  

 

Subsequent to Sims’s (1980) article, other forms of identification for the structural 

innovations have been developed. These use different restrictions on the VAR, but also usually 

involve a factorization of V (e.g., Blanchard and Quah 1989). 

The key uses of structural VAR are impulse response functions (i.e., moving average 

representations), which measure the effects over time of a given one-time shock to one element 

in ηt, and forecast error variance decompositions, which show the proportion of the variation of 

each variable in Yt that is due to random shocks in each element of ηt. The moving average 

representation is an equation such as 

 

.....13121 +++= −− tttt DDDY ηηη  

 

which is obtained by inverting the VAR (equation 1) and transforming the εt to ηt. 

Through the use of appropriate restrictions on A, the structural shocks ηt can be 

interpreted as monetary policy shocks, money demand shocks, and so on. These exercises 

cannot be done with the εt, because these reduced-form innovations are correlated. 

One implication of infinite diagonal elements in the variance-covariance matrix V for 

structural VAR is that the decomposition V = A-1A-1' is nonsensical, so there are no structural 

innovations defined by ηt = Aεt. All elements of the sample variance-covariance matrix V* will 

of course be finite, but V* will be an “estimate” of a matrix V with some infinite diagonal 
                                                 
2 Given the assumptions above, equation-by-equation estimation yields a consistent estimate of the regression 
parameters. Equation-by-equation least squares is identical to the seemingly unrelated regressions estimator in this 
case, so it is also the efficient generalized least squares (GLS) estimator. See Davidson and MacKinnon (2004: 
especially 595–597) or Hamilton (1994: 291–350), and the references therein for more details. 
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entries.3 The econometrician invokes the method of moments by setting V = V*, and in doing 

so, she is setting some finite sample moments equal to infinite population moments. Hence, if 

the characteristic exponent α of the distribution of any element of εt is less than 2, we cannot 

find a meaningful A and proceed with impulse response functions and forecast error variance 

decompositions.4 

The rest of the paper is organized as follows. Section II discusses the existing economic 

literature on stable distributions and monetary VARs. Section III is a discussion of this paper’s 

monetary VAR, including the data, the specification, and the results. It includes findings on 

heteroskedasticity, which is an alternative explanation of thick-tailed distributions. Section IV 

provides estimates of the characteristic exponents of all innovations for both the full sample 

and two subsamples and reports diagnostics to assess the fit of the estimated stable 

distributions. Section V draws together the key conclusions of the paper. 

 
II. REVIEW OF THE LITERATURE 

 
The use of stable distributions for economic variables began with Mandelbrot’s (1963) analysis 

of securities price changes, where he had noticed thick-tailed distributions. Fama (1963, 1965a, 

1965b) and Mandelbrot (1963, 1967) reported evidence that characteristic exponents of the 

distributions they studied were usually less than two. Blattberg and Gonedes (1974) and Clark 

(1973) countered that certain nonstable distributions better fit financial data. Blattberg and 

Sargent (1971) tested robust estimators of regression coefficients that were more efficient than 

least squares when the error terms were stable non-Gaussian. Granger and Orr (1972) analyzed 

the implications of stable distributions for time series analysis. Other papers, including 

Bhansali (1993), have studied the properties of estimates of impulse response functions for 

autoregressive processes with non-Gaussian stable distributions. These articles have not dealt 

with structural identification. More recently, Rachev, Kim, and Mittnik (1997) and DasGupta 

and Mishra (2004) reviewed findings on the econometrics of non-Gaussian stable distributions. 

Tsionas (1999) showed how Markov chain Monte Carlo methods could be used to estimate 

                                                 
3 Also, if more than one innovation has infinite variance, some off-diagonal entries in the variance-covariance 
matrix will be infinite. 
4 Another issue is the efficient estimation of the parameters when some residual variances are infinite. This point 
seems moot in the structural VAR setting, for the reasons stated in this paragraph, but references to articles on 
robust estimation in the presence of infinite-variance errors are included in Section 2.  
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models with stable, non-Gaussian disturbances. Mirowski (1990) discussed the history of these 

distributions in economics.  

Christiano, Eichenbaum, and Evans (1999) gives an account of what was learned about 

monetary VAR models. The VAR studied in this paper was chosen to be similar to many of 

those in the existing literature. Galí (2008: 8–9) is an example of a textbook that uses a VAR of 

this type as an empirical benchmark for a new Keynesian macro model. Some articles that 

present VARs similar to the one below are Bernanke and Mihov (1998b), Christiano, 

Eichenbaum, and Evans (1996), and Strongin (1995). These articles are discussed within a 

common framework by Leeper, Sims, and Zha (1996: 29–39). 

This paper is not meant as an analysis or discussion of any of these articles in 

particular. Rather, the paper is meant to illustrate problems that can occur in a VAR that is 

representative of many of those in the literature. Rudebusch (1998) undertook a detailed 

analysis of the innovations in monetary VARs, though the issues he raised are unrelated to 

those studied in this paper. 

Many recent articles have modeled thick-tailed behavior of monetary VAR residuals 

with various forms of heteroskedasticity (variances that change over time), including stochastic 

volatility, autoregressive conditional heteroskedasticity (ARCH), and Markov regime-

switching models. Some of these approaches do not permit the researcher to compute the kinds 

of impulse response functions and variance decompositions that are central to the papers in the 

preceding paragraph. Also, many of these models result in a marked increase in the number of 

parameters, subperiods, and/or impulse response functions. The approach here is to describe 

the residuals parsimoniously with one four-parameter distribution. Heteroskedasticity is 

studied in more depth in the remaining sections of the paper. 

Some references to the literature on methods of estimating α are provided at the 

beginning of section IV. 
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III. THE RESERVES VAR: DATA, MODEL, RESULTS, AND PROPERTIES OF THE 

RESIDUALS 

 
The data are monthly and span the period January 1959–November 2007. The included 

variables are a constant, industrial production (IP), the consumer price index for all urban 

consumers (CPI), the crude materials producer price index (PPI), the federal funds rate (FFR), 

and the Federal Reserve’s nonborrowed reserves (NBR) and adjusted total reserves (TR) series. 

All variables other than FFR were used in their seasonally adjusted forms and transformed into 

logs. Twelve lags of each variable were used in each equation.5 

First, this section presents a few results from the model. Since the purpose of this paper 

is not to present qualitatively new impulse response functions or variance decompositions, one 

set of impulse response functions will be shown merely to demonstrate that the VAR is fairly 

typical. Figure 2 (see next page) shows impulse response functions over a 48-month horizon 

for a positive, one-standard-deviation shock to FFR,6 which we will assume is the policy 

variable. The ordering of the variables in the Cholesky decomposition was IP, CPI, PPI, FFR, 

NBR, TR. Two-standard-deviation error Monte Carlo error bands are shown in the figure.7

                                                 
5 The NBR variable, described below, fell to negative levels after November 2007, making the log transformation 
impossible. Therefore, the sample was truncated at that date. 
6 The standard deviation was adjusted for degrees of freedom. 
7 The error bands were calculated based on 3,000 replications. 
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Figure 2. Response to Cholesky One S.D. Innovations 2± S.E. 
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The responses are mostly typical for a monetary VAR. The response of IP (industrial 

production) to a contractionary FFR (federal funds rate) shock is long-lived, negative, and 

statistically significant. (Since the variables other than FFR were used in log form, the numbers 

on the ordinates can be interpreted as approximations of percentage differences.) There appears 

to be a “price puzzle,” a phenomenon that appears in some VARs of this type (Sims 1992): CPI 

actually rises after a positive FFR shock, and this effect lasts for more than three years. 

The primary concern of this paper is the distribution of the innovations of the reduced-

form VAR. The innovations εt for each regression are charted in figure 3, a set of histograms 

follows in figure 4, and regression residual diagnostics appear in table 1 (below the figures). 

The dotted lines above and below the zero line in each innovation time series chart are one 

standard deviation from the mean. The histograms also show normal densities for comparison 

purposes. 
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Figure 3. Reduced-Form VAR Innovations εt 
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Figures 4–9. Histograms for εt  
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 Histogram and Normal curve for variable
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 Histogram and Normal curve for variable
LNTR
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Table 1. Sample Statistics for Reduced-Form Innovations εt 

 RESID01 RESID02 RESID03 RESID04 RESID05 RESID06 

 Mean -2.77E-16  8.26E-15 -9.01E-15  3.02E-13 -7.75E-15  1.61E-14 

 Median  0.000183 -4.85E-05  0.000605 -6.00E-05  0.000203 -0.000347 

 Maximum  0.026462  0.010786  0.180953  2.660516  0.268910  0.317765 

 Minimum -0.022984 -0.007704 -0.174898 -5.023082 -0.116996 -0.113474 

 Std. Dev.  0.006249  0.001972  0.027257  0.443849  0.021413  0.019618 

 Skewness  0.022306  0.175226  0.070495 -1.509032  2.794186  6.973937 

 Kurtosis  4.464086  6.285196  12.24979  35.74013  47.98869  123.6040 

       

 Jarque-Bera  51.40351  261.5130  2050.320  25899.56  49239.45  353142.5 

 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

       

 Sum -1.58E-13  4.75E-12 -5.18E-12  1.74E-10 -4.45E-12  9.27E-12 

 Sum Sq. Dev.  0.022413  0.002232  0.426443  113.0792  0.263201  0.220917 

       

 Observations  575  575  575  575  575  575 
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 The histograms in figures 4–9 give the impression that a non-Gaussian distribution of 

some type is likely. Table 1 and the histograms indicate that each set of residuals has excess 

kurtosis, and some are very skewed. Each Jarque-Bera test rejects the null of normality. Excess 

kurtosis and skew are consistent with a stable, non-Gaussian distribution. Autocorrelations are 

not reported, but each disturbance term tends to be very weakly autocorrelated.  

Figure 3 gives the impression of clusters of volatility. Mandelbrot (1963) observed such 

behavior in many financial time series, and it is certainly consistent with stable, non-Gaussian 

conditional and unconditional distributions (deVries 1991). On the other hand, the clusters of 

elevated or low volatility are also consistent with an ARCH (autoregressive conditional 

heteroskedasticity) or generalized ARCH (GARCH) process. Such processes have thick-tailed 

unconditional distributions, but not infinite variances (Engle 1982: 992). Therefore, an ARCH 

model is one possible alternative to a stable, non-Gaussian process. Tables 2 and 3 give the 

results of Engle (1982) tests for ARCH, first using 3 lags of the residuals, then 12 lags. Chi-

squared test statistics (third column) above the .05 critical value, which are marked with 

asterisks, reject the null of no ARCH effects. 

  

Table 2. Engle Test for ARCH, 3 Lags of Residuals, Sample Period 1959–2007 

Equation R2 R2 X T 
IP .051 29.172* 
CPI .091 52.052* 
PPI  .123 70.356* 
FFR .061 34.892* 

NBR .025 14.300* 
TR .019 10.868* 

 
Table 3. Engle Test for ARCH, 12 Lags of Residuals, Sample Period 1959–2007 

Equation R2 R2 X T 
IP .071 39.973* 
CPI .109 61.367* 
PPI  .131 73.753* 
FFR .137 77.131* 
NBR .025 14.075 
TR .019 10.697 
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While the null is rejected in each case for the first specification, and for four of the 

residuals in the second, the very small R2s indicate a fairly weak, though precisely estimated, 

effect. ARCH is clearly part of the story if the residuals have finite variances. However, ARCH 

does not exist under infinite variance, rendering the Engle test statistic meaningless in that 

case.  

Several articles have investigated heteroskedasticity in VARs similar to the one 

reported here. Some of these have found certain subperiods of homoskedasticity. Bernanke and 

Mihov (1998a: 163) find no evidence of a structural break in the policy block of their structural 

disturbances variance-covariance matrix in the periods January 1966–September 1979 and 

April 1988–April 1996. Tables 4 and 5 show the results of Engle tests for the first of these 

subperiods and for April 1988 to the end of the sample, which were performed after re-

estimating the model over these shorter periods. 

 
Table 4. Engle Test for ARCH, 3 Lags of Residuals, Sample Period 1966–1979 

 
Equation R2 R2 X T 
IP .012 1.944 
CPI .144 23.328* 
PPI  .103 16.686* 
FFR .072 11.664* 
NBR .001 .162 
TR .025 4.05 

 

Table 5. Engle Test for ARCH, 12 Lags of Residuals, Sample Period 1966–79 

Equation R2 R2 X T 
IP .047 7.191 
CPI .169 25.857* 
PPI  .135 20.655 
FFR .124 18.972 
NBR .037 5.661 
TR .094 14.382 

 

The innovations in the equations for IP, NBR, and TR seem to be free of ARCH or 

GARCH effects in the period 1966–79. Tables 6 and 7 refer to the 1988–2007 subperiod. 



 

 

 

17

Table 6. Engle Test for ARCH, 3 Lags of Residuals, Sample Period 1988–2007 

Equation R2 R2 X T 
IP .076 17.708* 
CPI .009 2.097 
PPI (raw mat.) .077 17.941* 
FFR .007 1.631 
NBR .001 .233 
TR .001 .233 

 
 

Table 7. Engle Test for ARCH, 12 Lags of Residuals, Sample Period 1988–2007 
 

Equation R2 R2 X T 
IP .104 23.296* 
CPI .040 8.960 
PPI  .085 19.040 
FFR .020 4.480 
NBR .001 .224 
TR .001 .224 

 

For this subperiod, the CPI, FFR, NBR, and TR residuals appear to have no ARCH or 

GARCH effects for each of the two lag lengths tested. Among other questions, the next section 

investigates both subperiods for signs of non-Gaussian stable shocks. 

 

IV. THE RESERVES VAR: ESTIMATES OF THE CHARACTERISTIC EXPONENTS 

 
Akgiray and Lamoureux (1989), Garcia, Renault, and Veredas (2006), Kogon and Williams 

(1998), Lombardi and Calzolari (2008), and McCulloch (1997) discuss the relative merits of 

some methods for estimating stable parameters. DuMouchel (1973) shows that except for some 

“exceptional parameter values,” the maximum likelihood (ML) estimates of α, β, γ, and δ are 

consistent and 

 

)ˆ,ˆ,ˆ,ˆ(2/1 δδγγββαα −−−−n  

 

has a limiting normal distribution with mean (0, 0, 0, 0) and covariance matrix I-1, where I is 

the information matrix and the parameters with circumflexes are the estimates. 
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Here, we begin with the estimation and diagnostics approach suggested by Nolan 

(1999, 2001). Three estimates are used here: the quantile method of McCulloch (1986), the 

characteristic function regression method of Koutrovelis (1980) and Kogon and Williams 

(1998), and the ML estimate (DuMouchel 1973; Nolan 2001).8 Table 8 reports estimates of the 

characteristic exponents (α) for the innovations in each equation of the reduced-form VAR. 

 

Table 8. Estimates of α for Innovations in Six-Variable VAR 

Equation Estimator 

Characteristic 
Exponent 

Estimate (α) 
(2 times 

asymptotic 
standard 

deviation). 
IP Quantile 1.6875 
 Char. function 1.8664 
 ML 1.7734 (.1165) 
CPI Quantile 1.7280 
 Char. Function 1.8189 
 ML 1.7325 (.1208) 
PPI Quantile 1.5987 
 Char. Function 1.6141 
 ML 1.5504 (.1265) 
FFR Quantile 1.5668 
 Char. Function 1.5884 
 ML 1.5623 (.1295) 
NBR Quantile 1.7167 
 Char. Function 1.7391 
 ML 1.7201 (.1221) 
TR Quantile 1.6864 
 Char. Function 1.7543 
 ML 1.7606 (.1180) 

 

                                                 
8 All three estimates were computed using the STABLE program, version 3.14.02, developed by John Nolan of 
American University and available online at academic2.american.edu/~jpnolan.  



 

 

 

19

The last column of table 8 shows the estimates, and, in parentheses, two times the 

asymptotic standard deviations for the maximum likelihood estimates. The results are fairly 

consistent across estimators for each set of residuals. In each case, the normal distribution (α = 

2) is more than two standard deviations above the estimate. One note of caution is that for α 

close to the Gaussian value of two, the normal asymptotic distribution of the estimate of α is 

not a good approximation, with the likelihood function falling more steeply to the right of the 

estimate than to the left for relatively small samples (DuMouchel 1983: 1021). Also, 

asymptotic distribution theory simply does not apply when α = 2 (DuMouchel 1983: 1021).  

Having fitted stable distributions to each set of residuals, the next question is whether 

the distributions are stable at all. Nolan notes that “As with any other family of distributions, it 

is not possible to prove that a given data set is stable” (2001: 388). Nonetheless, some 

diagnostic tools can help determine if the data are consistent with a hypothesis of stability 

(Nolan 2001: 388). Figures 10–15 are modified P-P plots9 (percent-percent plots) for the ML 

estimates above of the distributions of each innovation. The closer the thick, gray line is to the 

thin, straight line, the better the ML stable estimate fits the data. 

                                                 
9 Modified P-P plots, introduced in Michael (1983), are also known as stabilized P-P plots, though the latter term 
is not connected to the stable family of distributions. Modified P-P plots apply an arcsin transformation to 
standard P-P plots in order to equalize the variance of all of the points on the plot. The resulting plot enables a 
better assessment of the fit at the extremes of the distribution (Nolan 2001: 388). Let F0 be the ML estimate of the 
distribution of one of the disturbances, using the stable model. Also, let ei , i = 1, 2,….., n-1, n be the order 
statistics of the residuals. Then, the ith abscissa of the modified P-P plot is 
 

( )[ ]2/1/]2/1[arcsin)/2( niri −= π  
 
and the ith ordinate is 
 

[ ])(arcsin)/2( 2/1
0 ii eFs π=  

 
The modified P-P plots in this paper are constructed from 200 points. 
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Figure 10. Modified PP Plot for IP Stable Fit (ML Estimate)
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Figure 11. Modified PP Plot for CPI Stable Fit (ML Estimate)
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Figure 12. Modified PP Plot for PPI Stable Fit (ML Estimate)
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Figure 13. Modified PP Plot for FFR Stable Fit (ML Estimate)
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Figure 14: Modified PP Plot for NBR Stable Fit (ML Estimate)
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Figure 15. Modified PP Plot for TR Stable Fit (ML Estimate)
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These figures show that the ML estimates appear to result in very good fits for all six series of 

innovations.10 

One way of testing the hypothesis that heteroskedasticity is responsible for the 

appearance of non-normality is to focus on estimates over subsamples that appear relatively 

homoskedastic. For the 1966–79 subsample, three sets of residuals appeared to be free of 

ARCH effects in the tests of the previous section: IP, NBR, and TR. For the 1988–2007 

subsample, CPI, FFR, NBR, and TR appeared homoskedastic according to the test. Tables 9 

and 10 show estimates of α for these subperiods, with the homoskedastic innovations 

highlighted in gray. 

 
Table 9. Estimated Characteristic Exponents (α) for 1966–79 Subsample 

Equation Estimator 
Characteristic 

Exponent 
Estimate (α) 

IP Quantile 1.8892 
 Char. function 1.9626 
 ML 2.0000 (#) 
CPI Quantile 1.7983 
 Char. Function 1.8648 
 ML 1.8557 (.1869) 
PPI Quantile 1.5987 
 Char. Function 1.8071 
 ML 1.7351 (.2241) 
FFR Quantile 1.6319 
 Char. Function 1.8449 
 ML 1.7630 (.2166) 
NBR Quantile 1.8935 
 Char. Function 1.9432 
 ML 1.8673 (.1815) 
TR Quantile 1.9271 
 Char. Function 1.9813 
 ML 2.0000 (#) 

Notes: # Confidence interval not shown for IP and TR because  
        asymptotic theory does not apply at α = 2. 
        Residuals that were homoskedastic according to the tests     
        of the previous section are highlighted with a gray  
        background.

                                                 
10 Among 40 other tested distributions, the one that appeared to fit the residuals most closely and consistently was a log-
logistic distribution. 
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Table 10. Estimated Characteristic Exponents (α) for 1988–2007 Subsample 

Equation Estimator 
Characteristic 

Exponent 
Estimate (α) 

IP Quantile 2.0000 
 Char. Function 1.9401 
 ML 1.8807 (.1489) 
CPI Quantile 1.8258 
 Char. Function 1.8773 
 ML 1.8581 (.1559) 
PPI Quantile 1.7713 
 Char. Function 1.8619 
 ML 1.8520 (.1595) 
FFR Quantile 1.7428 
 Char. Function 1.9431 
 ML 1.9046 (.1401) 
NBR Quantile 1.8169 
 Char. Function 1.7341 
 ML 1.7588 (.1839) 
TR Quantile 1.7204 
 Char. Function 1.7121 
 ML 1.7252 (.1882) 

Notes: Residuals that were homoskedastic according to the tests  
           of the previous section are highlighted with a gray  
           background. 
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The sample splits are unevenly effective in removing the non-normality of the data. 

Given the small sample sizes for the two subperiods, the results—including the asymptotic 

standard deviations—should be interpreted with great caution. For each variable in a given 

subperiod, the three estimators give more divergent results than in the full sample, which 

makes us less confident of the results. This uncertainty is also reflected in the larger two-

standard-deviation asymptotic intervals reported in parentheses in the last column of each table 

than for the full sample. For the first subsample, the Gaussian case (α = 2) lies outside the 

confidence interval for the maximum likelihood α’s for FFR and PPI. For the second 

subsample, the estimates for NBR and TR are likewise significantly different from two. In that 

subsample, these last two variables both had R2s of .001 in the Engle ARCH tests reported 

above. To sum up, a model that divided the sample into these two subperiods plus a third 

subperiod for the intervening years would succeed in removing non-normality in all subperiods 

for two variables at most—IP and CPI. The effort to explain away the excess kurtosis in the 

distributions with time-varying variances does not completely succeed, at least when 

heteroskedasticity is modeled with an ARCH or GARCH process. 

 

V. SUMMARY AND CONCLUSION 

 
This paper reports estimates of the characteristic exponents α of the innovations in a six-

variable monetary VAR. The reason for finding these estimates is that for α < 2, stable 

distributions have infinite variances, making structural factorizations of innovation variance-

covariance matrices impossible.  

This paper’s VAR appears to lead to impulse response functions that are typical in the 

monetary VAR literature. However, diagnostics show that the innovations have thick-tailed 

distributions. Also, Engle (1982) tests indicate weak but statistically significant ARCH effects, 

which could potentially account for the thick-tailedness of the innovation distributions. 

Pursuing a hypothesis that the innovations have stable, non-Gaussian unconditional 

distributions, the paper finds ML estimates of the α’s ranging from 1.5504 for the innovations 

in the equation for the crude materials producer price index (PPI) to 1.7734 for the industrial 

production (IP) equation. Using the asymptotic confidence intervals, all of these estimates of α 

are significantly different from two, the value for the Gaussian case. P-P plots give a visual 

impression that the estimated stable distributions fit the innovations well. Following through on 



 

 

 

29

the earlier observation of ARCH effects, the paper re-estimates the VAR for subperiods that 

appear free of heteroskedasticity based on Engle (1982) tests. For the 1988–2007 subsample, 

two variables without statistically significant ARCH effects—the innovations in the NBR and 

TR equations—had estimated α’s that were very close to the estimates for the full sample. 

Moreover, for most of the key purposes of VARs such as the one in this paper, it is the 

unconditional distribution of the innovations that is relevant for the purpose of identifying the 

structural residuals. 
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